STEINBERG REPRESENTATION OF GSp(4): BESSEL MODELS AND INTEGRAL REPRESENTATION OF L-FUNCTIONS

AMEYA PITALE
We obtain explicit formulas for the test vector in the Bessel model, and derive the criteria for existence and uniqueness of Bessel models for the unramified quadratic twists of the Steinberg representation π of $\text{GSp}_4(F)$, where F is a nonarchimedean local field of characteristic zero. We also give precise criteria for the Iwahori spherical vector in π to be a test vector. We apply the formulas for the test vector to obtain an integral representation of the local L-function of π, twisted by any irreducible admissible representation of $\text{GL}_2(F)$. Using results of Furusawa and of Pitale and Schmidt, we derive from this an integral representation for the global L-function of the irreducible cuspidal automorphic representation of $\text{GSp}_4(\mathbb{A})$ obtained from a Siegel cuspidal Hecke newform, with respect to a Borel congruence subgroup of square-free level, twisted by any irreducible cuspidal automorphic representation of $\text{GL}_2(\mathbb{A})$. A special-value result for this L-function, in the spirit of Deligne’s conjecture, is obtained.

1. Introduction

It is known that the representation of the symplectic group obtained from a Siegel modular form is nongeneric, which means that it does not have a Whittaker model. Consequently, one cannot use in this case the techniques or results for generic representations. In such a situation, one introduces the notion of a generalized Whittaker model, now called a Bessel model. These Bessel models have been used to obtain integral representations of L-functions. It is known that, if \mathbb{A} is the ring of adeles of a number field, an automorphic representation of $\text{GSp}_4(\mathbb{A})$ obtained from a Siegel modular form always has some global Bessel model. For the purposes of local calculations, it is often very important to know the precise criteria for the existence of local Bessel models and have explicit formulas. In this paper, we wish to investigate Bessel models for unramified quadratic twists of

MSC2000: primary 11F46; secondary 11F66, 11F67, 11F70.

Keywords: Steinberg representation, Siegel modular forms, L-functions, special values of L-functions.
the Steinberg representation π of $\text{GSp}_4(F)$, where F is any nonarchimedean local field of characteristic zero.

We first briefly explain what a Bessel model is (detailed definitions will be given in Section 3). Let F be a nonarchimedean local field of characteristic zero. Let $U(F)$ be the unipotent radical of the Siegel parabolic subgroup of $\text{GSp}_4(F)$, and θ be any nondegenerate character of $U(F)$. The group $\text{GL}_2(F)$, embedded in the Levi subgroup of the Siegel parabolic subgroup, acts on $U(F)$ by conjugation and, hence, on characters of $U(F)$. Let $T(F) = \text{Stab}_{\text{GL}_2(F)}(\theta)$; then, $T(F)$ is isomorphic to the units of a quadratic algebra L over F. The group $R(F) = T(F)U(F)$ is called the Bessel subgroup of $\text{GSp}_4(F)$ (depending on θ). Let Λ be any character of $T(F)$, and denote by $\Lambda \otimes \theta$ the character obtained on $R(F)$. Let (π, V) be any irreducible admissible representation of $\text{GSp}_4(F)$. A linear functional $\beta : V \to \mathbb{C}$, satisfying $\beta(\pi(r)v) = (\Lambda \otimes \theta)(r) \beta(v)$ for any $r \in R(F)$ and $v \in V$, is called a (Λ, θ)-Bessel functional for π. We say that π has a (Λ, θ)-Bessel model if π is isomorphic to a subspace of smooth functions $B : \text{GSp}_4(F) \to \mathbb{C}$ such that $B(\gamma h) = (\Lambda \otimes \theta)(r) B(h)$ for all $r \in R(F)$ and $h \in \text{GSp}_4(F)$. The existence of a nontrivial Bessel functional is equivalent to the existence of a Bessel model for a representation. If π has a nontrivial (Λ, θ)-Bessel functional β, then a vector $v \in V$ such that $\beta(v) \neq 0$ is called a test vector for β.

Prasad and Takloo-Bighash [2007] have obtained, for any irreducible admissible representation π of $\text{GSp}_4(F)$, the criteria to be satisfied by Λ for the existence of a (Λ, θ)-Bessel functional for π. Their method involves the use of theta lifts and distributions. The uniqueness of Bessel functionals has been obtained in [Novo–dvorsky and Piatetski-Shapiro 1973] for many cases; in particular, for any π with a trivial central character. In [Sugano 1985], a test vector is obtained when both the representation π and the character Λ are unramified. In [Saha 2009], a test vector is obtained when $F = \mathbb{Q}_p$, where p is odd and inert in the quadratic field extension L corresponding to $T(\mathbb{Q}_p)$, the representation π is an unramified quadratic twist of the Steinberg representation, and Λ has conductor $1 + p\mathfrak{o}_L$. The explicit formulas of the test vector in the above two cases have been used in [Furusawa 1993; Saha 2009] to obtain an integral representation of the $\text{GSp}_4 \times \text{GL}_2$ L-function, where the GL_2 representation is either unramified or Steinberg.

The main goal of this paper is to obtain explicit formulas for a test vector, whenever a Bessel model for the unramified quadratic twist of the Steinberg representation of $\text{GSp}_4(F)$ exists. In addition to obtaining these formulas, we in fact obtain an independent proof of the criteria for the existence and uniqueness of the Bessel models. We also give precise conditions on the character Λ, so that the Iwahori spherical vector in π is a test vector. This is achieved in:

Theorem 3.18. Let $\pi = \Omega \text{St}_{\text{GSp}_4}$ be the Steinberg representation of $\text{GSp}(F)$, twisted by an unramified quadratic character Ω. Let Λ be a character of L^\times
such that $\Lambda|_{F^\times} \equiv 1$. If L is a field, then π has a (Λ, θ)-Bessel model if and only if $\Lambda \neq \Omega \circ N_L/F$. If L is not a field, then π always has a (Λ, θ)-Bessel model. In case π has a (Λ, θ)-Bessel model, it is unique. In addition, if π has a (Λ, θ)-Bessel model, then the Iwahori spherical vector of π is a test vector for the Bessel functional if and only if

i) Λ is trivial on $1 + \mathfrak{p}$ (see (2-1) for the definition of \mathfrak{p}), and

ii) in case $L = F \oplus F$ and Λ is unramified, we have $\Lambda((1, \sigma)) \neq \Omega(\sigma)$, where σ is the uniformizer in the ring of integers of F.

The criterion for the existence of the Bessel model obtained in this theorem is the same as in [Prasad and Takloo-Bighash 2007]. However, the methods used to prove it are very different from those in that paper and in [Novo-dvorsky and Piatetski-Shapiro 1973].

When the Iwahori spherical vector is a test vector, we use the explicit formula for the test vector to obtain in Theorem 4.3 an integral representation of the local L-function $L(s, \pi \times \tau)$ of the Steinberg representation π of $\text{GSp}_4(F)$, twisted by any irreducible admissible representation τ of $\text{GL}_2(F)$. This integral involves a function B in the Bessel model of π, and a Whittaker function $W^\#$ in a certain induced representation of $\text{GU}(2, 2)$ related to τ. We wish to remark that, in this paper as well as in other works [Furusawa 1993; Pitale and Schmidt 2009b; 2009c; Saha 2009], the Bessel function B is always chosen to be a “distinguished” vector (spherical if π is unramified, and Iwahori spherical if π is Steinberg) that has the additional property of being a test vector. With this choice of B, we have a systematic way of choosing $W^\#$ (see [Pitale and Schmidt 2009c]) so that the integral is nonzero and gives an integral representation of the L-function. The work so far suggests that, to obtain an integral representation for the L-function with a general irreducible admissible representation π of $\text{GSp}_4(F)$, we will have to choose B to be both a “distinguished” vector in the Bessel model of π and a test vector for the Bessel functional. This further highlights the importance of obtaining more information and explicit formulas for test vectors for Bessel models of $\text{GSp}_4(F)$. This is a topic of ongoing work.

Using the local computation mentioned above, together with the archimedean and p-adic calculations from [Furusawa 1993; Pitale and Schmidt 2009c], we obtain in Theorem 5.2 an integral representation of the global L-function $L(s, \pi \times \tau)$ of an irreducible cuspidal automorphic representation π of $\text{GSp}_4(\mathbb{A})$, obtained from a Siegel cuspidal newform with respect to the Borel congruence subgroup of square-free level, twisted by any irreducible cuspidal automorphic representation τ of $\text{GL}_2(\mathbb{A})$. When τ corresponds to an elliptic cusp form in $S_1(N, \chi)$, we obtain in Theorem 5.3 algebraicity results for special values of the twisted L-function, in the spirit of Deligne’s conjecture [1979].
2. Steinberg representation of GSp_4

Nonarchimedean setup. Let F be a nonarchimedean local field of characteristic zero. Let \mathfrak{o}, \mathfrak{p}, σ, q be the ring of integers, prime ideal, uniformizer and cardinality of the residue class field $\mathfrak{o}/\mathfrak{p}$, respectively. We fix three elements $a, b, c \in F$ such that $d := b^2 - 4ac \neq 0$. Let

$$L = \begin{cases} F(\sqrt{d}) & \text{if } d \notin F^\times \text{ and } d \notin \mathfrak{p}, \\ F \oplus F & \text{if } d \in F^\times. \end{cases}$$

In the case when $L = F \oplus F$, we consider F diagonally embedded. If L is a field, we denote by \bar{x} the Galois conjugate of $x \in L$ over F. If $L = F \oplus F$, let $(x, y) = (y, x)$. In every case, we let $N(x) = x\bar{x}$ and $\text{tr}(x) = x + \bar{x}$. We shall assume that $a, b \in \mathfrak{o}$ and $c \in \mathfrak{o}^\times$. In addition, we assume that d is the generator of the discriminant of L/F if $d \notin F^\times$ and $d \in \mathfrak{o}^\times$ if $d \in F^\times$.

The Legendre symbol $(\frac{L}{p})$ is set to

$$
(\frac{L}{p}) = \begin{cases} -1 & \text{if } d \notin F^\times \text{ and } d \notin \mathfrak{p} \text{ (the inert case),} \\ 0 & \text{if } d \notin F^\times \text{ and } d \in \mathfrak{p} \text{ (the ramified case),} \\ 1 & \text{if } d \in F^\times \text{ (the split case).} \end{cases}
$$

If L is a field, then let \mathfrak{o}_L be its ring of integers. If $L = F \oplus F$, then let $\mathfrak{o}_L = \mathfrak{o} \oplus \mathfrak{o}$. Let σ_L be the uniformizer of \mathfrak{o}_L if L is a field, and set $\sigma_L = (\sigma, 1)$ if L is not a field. Note that, if $(\frac{L}{p}) \neq -1$, then $N(\sigma_L) \in \sigma \mathfrak{o}^\times$. Let $\alpha \in \mathfrak{o}_L$ be defined by

$$
\alpha := \begin{cases} \frac{b + \sqrt{d}}{2c} & \text{if } L \text{ is a field,} \\ \left(\frac{b + \sqrt{d}}{2c}, \frac{b - \sqrt{d}}{2c}\right) & \text{if } L = F \oplus F. \end{cases}
$$

We fix in \mathfrak{o}_L the ideal

$$
(2-1) \quad \mathfrak{P} := \mathfrak{p}\mathfrak{o}_L = \begin{cases} \mathfrak{p}_L & \text{if } (\frac{L}{p}) = -1, \\ \mathfrak{p}_L^2 & \text{if } (\frac{L}{p}) = 0, \\ \mathfrak{p} \oplus \mathfrak{p} & \text{if } (\frac{L}{p}) = 1. \end{cases}
$$

Here, when L is a field extension, \mathfrak{p}_L is the maximal ideal of \mathfrak{o}_L. Note that \mathfrak{P} is prime only if $(\frac{L}{p}) = -1$. We have

$$
\mathfrak{P}^n \cap \mathfrak{o} = \mathfrak{p}^n \quad \text{for all } n \geq 0.
$$

Lemma 2.1 [Pitale and Schmidt 2009b, Lemma 3.1.1]. With the notation above, the elements 1 and α constitute an integral basis of L/F. There does not exists any $x \in \mathfrak{o}$ such that $\alpha + x \in \mathfrak{P}$.
Steinberg representation. We define the symplectic group \(H = \text{GSp}_4 \) by
\[
H(F) := \{ g \in \text{GL}_4(F) : ^t g J g = \mu_2(g) J, \ \mu_2(g) \in F^\times \}, \quad \text{where } J = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.
\]

The maximal compact subgroup is denoted by
\[
K^H := \text{GSp}_4(o).
\]

We define the Iwahori subgroup by
\[
I := \left \{ g \in K^H : g \equiv \begin{bmatrix} \ast & 0 & \ast & \ast \\ \ast & \ast & \ast & \ast \\ 0 & 0 & \ast & \ast \\ 0 & 0 & 0 & \ast \end{bmatrix} \pmod{p} \right \}.
\]

Let \(\Omega \) be an unramified quadratic character of \(F^\times \). Let \(\pi \) be the Steinberg representation of \(H(F) \), twisted by the character \(\Omega \). This representation is denoted by \(\Omega \text{St}_{\text{GSp}_4} \). Since we have assumed that \(\Omega \) is quadratic, we see that \(\pi \) has trivial central character. The Steinberg representation has the property that it is the only representation of \(H(F) \) which has a unique (up to a constant) Iwahori fixed vector. The Iwahori Hecke algebra acts on the space of I-invariant vectors. We will next describe the Iwahori Hecke algebra.

Iwahori Hecke algebra. The Iwahori Hecke algebra \(\mathcal{H}_I \) of \(H(F) \) is the convolution algebra of left and right I-invariant functions on \(H(F) \). We refer the reader to \([Schmidt 2005, \S 2.1]\) for details on the Iwahori Hecke algebra. Here, we recall the two projection operators (projecting onto the Siegel and Klingen parabolic subgroups) and the Atkin–Lehner involution. The unique (up to a constant) Iwahori fixed vector \(v_0 \) in \(\pi \) is annihilated by the projection operators and is an eigenvector of the Atkin–Lehner involution.

\[
\sum_{w \in o/p} \pi \left(\begin{bmatrix} 1 & w \\ 1 & -w \end{bmatrix} \right) v_0 + \pi(s_1) v_0 = 0, \quad \pi(\eta_0) v_0 = \omega v_0,
\]
\[
\sum_{y \in o/p} \pi \left(\begin{bmatrix} 1 & y \\ 1 & 1 \end{bmatrix} \right) v_0 + \pi(s_2) v_0 = 0.
\]

Here,
\[
s_1 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad s_2 = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}, \quad \eta_0 = \begin{bmatrix} 1 \\ \sigma \end{bmatrix}, \quad \omega = -\Omega(\sigma).
\]

3. Existence and uniqueness of Bessel models
for the Steinberg representation

We fix an additive character \(\psi \) of \(F \), with conductor \(o \). Let \(a, b \in o \) and \(c \in o^\times \) be as in Section 2, and set

\[
S = \begin{bmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{bmatrix}.
\]

Then, \(\psi \) defines a character \(\theta \) on

\[
U(F) = \left\{ \begin{bmatrix} 1 & X \\ \frac{1}{2}X \end{bmatrix} : \begin{bmatrix} 1 & X \\ X \end{bmatrix} = \psi(\text{tr}(S X)) \right\}
\]

by

\[
\theta \left(\begin{bmatrix} 1 & X \\ X \end{bmatrix} \right) = \psi(\text{tr}(S X))
\]

Let

\[
T(F) := \left\{ g \in \text{GL}_2(F) : gSg^{-1} \right\}
\]

Set

\[
\xi = \begin{bmatrix} \frac{b}{2} & c \\ -a & \frac{b}{2} \end{bmatrix} \quad \text{and} \quad F(\xi) = \{ x + y\xi : x, y \in F \}.
\]

It can be checked that \(T(F) \) equals \(F(\xi)^\times \) and is isomorphic to \(L^\times \), with the isomorphism given by

\[
\begin{bmatrix} x + \frac{b}{2}y & cy \\ -ay & x - \frac{b}{2}y \end{bmatrix} \mapsto \begin{cases} x + y\sqrt{d} & \text{if } L \text{ is a field;} \\ (x + y\sqrt{d}, x - y\sqrt{d}) & \text{if } L = F \oplus F. \end{cases}
\]

We consider \(T(F) \) as a subgroup of \(H(F) \) via

\[
T(F) \ni g \longmapsto \begin{bmatrix} g \\ \text{det}(g)^{-1} \end{bmatrix} \in H(F).
\]

Let \(R(F) = T(F)U(F) \). We call \(R(F) \) the Bessel subgroup of \(H(F) \) (with respect to the given data \(a, b, c \)). Let \(\Lambda \) be any character on \(L^\times \) that is trivial on \(F^\times \). We will consider \(\Lambda \) as a character on \(T(F) \). We have \(\theta(t^{-1}ut) = \theta(u) \) for all \(u \in U(F) \) and \(t \in T(F) \). Hence, the map \(tu \mapsto \Lambda(t)\theta(u) \) defines a character of \(R(F) \). We denote this character by \(\Lambda \otimes \theta \).

As mentioned in the introduction, a linear functional \(\beta : V \to \mathbb{C} \), satisfying \(\beta(\pi(r)v) = (\Lambda \otimes \theta)(r)\beta(v) \) for any \(r \in R(F) \) and \(v \in V \), is called a \((\Lambda, \theta)\)-Bessel functional for \(\pi \). We say that \(\pi \) has a \((\Lambda, \theta)\)-Bessel model if \(\pi \) is isomorphic to a subspace of smooth functions \(B : H(F) \to \mathbb{C} \) satisfying

\[
B(tuh) = \Lambda(t)\theta(u)B(h) \quad \text{for all } t \in T(F), u \in U(F), h \in H(F).
\]

The existence of a nonzero \((\Lambda, \theta)\)-Bessel functional for \(\pi \) is equivalent to the existence of a nontrivial \((\Lambda, \theta)\)-Bessel model for \(\pi \). If \(\pi \) has a nonzero \((\Lambda, \theta)\)-Bessel functional \(\beta \), then the space \(\{ B_v : v \in \pi, B_v(h) := \beta(\pi(h)v) \} \) gives a nontrivial \((\Lambda, \theta)\)-Bessel model for \(\pi \). Conversely, if \(\pi \) has a nontrivial \((\Lambda, \theta)\)-Bessel model
\{B_v : v \in \pi \} then the linear functional \(\beta(v) := B_v(1) \) is a nonzero \((\Lambda, \theta)\)-Bessel functional for \(\pi \). We say that \(v \in \pi \) is a test vector for a Bessel functional \(\beta \) if \(\beta(v) \neq 0 \). Note that a vector \(v \in \pi \) is a test vector for \(\beta \) if and only if the corresponding function \(B_v \) in the Bessel model satisfies \(B_v(1) \neq 0 \).

Define the space \(B(\Lambda, \theta)^I \) of smooth functions \(B \) on \(H(F) \) which are right \(I \)-invariant, satisfy (3-3) and the following conditions, for any \(h \in H(F) \), obtained from (2-2),

\[
\sum_{w \in \mathfrak{o}/p} B\left(h \begin{bmatrix} 1 & w \\ 1 & 1 \end{bmatrix} \right) + B(hs_1) = 0, \tag{3-4}
\]

\[
B(h \eta_0) = \omega B(h), \tag{3-5}
\]

\[
\sum_{y \in \mathfrak{o}/p} B\left(h \begin{bmatrix} 1 & y \\ 1 & 1 \end{bmatrix} \right) + B(hs_2) = 0. \tag{3-6}
\]

Our aim is to obtain the criteria for existence and uniqueness for \((\Lambda, \theta)\)-Bessel models for \(\pi \). We state the steps we take to obtain this.

i) Since a function \(B \) in \(B(\Lambda, \theta)^I \) is right \(I \)-invariant and satisfies (3-3) we see that the values of \(B \) are completely determined by its values on double coset representatives \(R(F) \setminus H(F)/I \). We obtain these representatives in Proposition 3.3.

ii) In Proposition 3.8, we use the \(I \)-invariance of \(B \) and (3-3)–(3-6) to obtain necessary conditions to be satisfied by the values of functions in \(B(\Lambda, \theta)^I \) on double coset representatives for \(R(F) \setminus H(F)/I \). This gives us \(\dim(B(\Lambda, \theta)^I) \leq 1 \) in Corollary 3.9.

iii) In Proposition 3.10, we show that the function \(B \) with the given values at double coset representatives for \(R(F) \setminus H(F)/I \) (obtained in Proposition 3.8) is well-defined. We show that \(B \) satisfies (3-4), (3-5) and (3-6) for all values of \(h \in H(F) \) and obtain the criteria for \(\dim(B(\Lambda, \theta)^I) = 1 \) in Theorem 3.11.

iv) Suppose \(\Lambda \) is such that \(\dim(B(\Lambda, \theta)^I) = 1 \). If \(\Lambda \) is unitary then we use \(0 \neq B \in B(\Lambda, \theta)^I \) to generate a Hecke module \(V_B \). We define an inner product on \(V_B \) and show in Proposition 3.15 that \(V_B \) is irreducible and provides a \((\Lambda, \theta)\)-Bessel model for \(\pi \). If \(\Lambda \) is not unitary (this can happen only if \(L \) is a split extension of \(F \)), then we show that any irreducible, generic, admissible representation of \(H(F) \) has a split \((\Lambda, \theta)\)-Bessel model. Since \(\pi \) is generic in the split case, we obtain in Theorem 3.18 the precise criteria for existence and uniqueness of a \((\Lambda, \theta)\)-Bessel model for \(\pi \).
3.1. **Double coset decomposition.** From [Furusawa 1993, (3.4.2)], we have the disjoint double coset decomposition

\[
H(F) = \bigsqcup_{l \in \mathbb{Z}} \bigsqcup_{m \geq 0} R(F)h(l, m)K^H, \quad h(l, m) = \begin{bmatrix} \alpha^2 m + l \\ \alpha^m \end{bmatrix}.
\]

It follows from the Bruhat decomposition for Sp(4, o/p) that

\[
K^H = I \sqcup \bigsqcup_{x \in o/p} \begin{bmatrix} 1 & 1 \\ x & -x \end{bmatrix} s_1I \sqcup \begin{bmatrix} 1 & x \\ 1 & 1 \end{bmatrix} s_2I \\
\sqcup \bigsqcup_{x, y \in o/p} \begin{bmatrix} 1 & y \\ x & 1 \end{bmatrix} s_1s_2I \sqcup \begin{bmatrix} 1 & x \\ y & 1 \end{bmatrix} s_2s_1I \\
\sqcup \bigsqcup_{x, y, z \in o/p} \begin{bmatrix} 1 & y \\ x & 1 \end{bmatrix} s_1s_2s_1I \sqcup \begin{bmatrix} 1 & x \\ y & 1 \end{bmatrix} s_2s_1s_2I \\
\sqcup \bigsqcup_{w, x, y, z \in o/p} \begin{bmatrix} 1 & y \\ w & 1 \end{bmatrix} s_1s_2s_1s_2I.
\]

Let \(W = \{1, s_1, s_2, s_1s_2, s_2s_1, s_1s_2s_1, s_2s_1s_2, s_1s_2s_1s_2\}\) be the Weyl group of Sp_4(F) and let the representatives for \(\{1, s_1\} \setminus W\) be given by \(W^{(1)} = \{1, s_2, s_2s_1, s_2s_1s_2\}\).

Observing that

\[
h(l, m) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} h(l, m)^{-1}
\]

is contained in \(R(F)\), we get a preliminary (nondisjoint) decomposition

\[
(3.7) \quad R(F)h(l, m)K^H = \bigcup_{s \in W^{(1)}} (R(F)h(l, m)sI \cup R(F)h(l, m)W_{w}s_1s_1I),
\]

with \(W_w := \begin{bmatrix} 1 & w & 1 \\ 1 & -w & 1 \end{bmatrix}\).

The next lemma gives the condition under which the two double cosets of the form \(R(F)h(l, m)sI\) and \(R(F)h(l, m)W_{w}s_1s_1I\) are the same.

Lemma 3.1. For \(w \in o/p\) and \(m \geq 0\), set \(\beta_w^m := \alpha \sigma^2 m + b \sigma^m w + c w^2\). Let \(s \in W^{(1)}\). Then \(R(F)h(l, m)sI = R(F)h(l, m)W_{w}s_1s_1I\) if and only if \(\beta_w^m \in o^X\).
Proof. Suppose $\beta^m_w \in \mathfrak{o}^{\times}$. Take $y = \omega^m, x = \omega^mb/2 + cw$ and set

$$g = \begin{bmatrix} x + \frac{b}{2}y & cy \\ -ay & x - \frac{b}{2}y \end{bmatrix}.$$

Then

$$\begin{bmatrix} g & \det(g)g^{-1} \end{bmatrix} h(l, m) = h(l, m) W_{w_s1} k,$$

where

$$k = \begin{bmatrix} -\beta^m_w & b\omega^m + cw & c \\ b\omega^m + cw & -c & b\omega^m + cw \\ \beta^m_w & \end{bmatrix} \in I.$$

Note that for any $s \in W^{(1)}$, we have $s^{-1}k \in I$. Using

$$rh(l, m)s = h(l, m) W_{w_s1} s (s^{-1}k s),$$

we obtain $R(F) h(l, m) s I = R(F) h(l, m) W_{w_s1} s I$, as required. The computation of the converse is straightforward. \qed

The next lemma describes for which $w \in \mathfrak{o}/\mathfrak{p}$ we have $\beta^m_w \in \mathfrak{o}^{\times}$.

Lemma 3.2. For $w \in \mathfrak{o}/\mathfrak{p}$ and $m \geq 0$, set $\beta^m_w := a\omega^{2m} + b\omega^m w + cw^2$ as above.

i) If $m > 0$, then $\beta^m_w \in \mathfrak{o}^{\times}$ if and only if $w \in (\mathfrak{o}/\mathfrak{p})^{\times}$.

ii) Let $m = 0$.

a) If $\left(\frac{L}{\mathfrak{p}}\right) = -1$, then $\beta^0_w \in \mathfrak{o}^{\times}$ for every $w \in \mathfrak{o}/\mathfrak{p}$.

b) Let $\left(\frac{L}{\mathfrak{p}}\right) = 0$. Let w_0 be the unique element of $\mathfrak{o}/\mathfrak{p}$ such that $\alpha + w_0 \in \mathfrak{p}_L$, the prime ideal of \mathfrak{o}_L. Then $\beta^0_w \in \mathfrak{o}^{\times}$ if and only if $w \neq w_0$. In case $\#(\mathfrak{o}/\mathfrak{p})$ is odd, one can take $w_0 = -b/(2c)$.

c) Let $\left(\frac{L}{\mathfrak{p}}\right) = 1$. Then $\beta^0_w \in \mathfrak{o}^{\times}$ if and only if $w \neq \frac{-b + \sqrt{d}}{2c}, \frac{-b - \sqrt{d}}{2c}$.

Proof. Part (i) is clear. For the rest of the lemma, we need the equivalence

$$\beta^0_w \in \mathfrak{o}^{\times} \iff \alpha + w \in \mathfrak{o}_L^{\times}.$$

This follows from the identity

$$\beta^0_w \in \mathfrak{o}^{\times} \iff \alpha + w \in \mathfrak{o}_L^{\times}.$$

If $\left(\frac{L}{\mathfrak{p}}\right) = -1$, then $\mathfrak{p}_L = \mathfrak{P}$ and Lemma 2.1 implies that $\alpha + w \in \mathfrak{o}_L^{\times}$ for all $w \in \mathfrak{o}/\mathfrak{p}$.

The equivalence (3-8) gives (ii-a) of the lemma. Let us now assume that $\left(\frac{L}{\mathfrak{p}}\right) = 0$. In this case, the injective map $\iota : \mathfrak{o} \hookrightarrow \mathfrak{o}_L$ gives an isomorphism between the fields $\mathfrak{o}/\mathfrak{p} \simeq \mathfrak{o}_L/\mathfrak{p}_L$. Let $w_0 = -\iota^{-1}(\alpha)$ be the unique element in $\mathfrak{o}/\mathfrak{p}$ such that $\alpha + w_0 \in \mathfrak{p}_L$. In case $\#(\mathfrak{o}/\mathfrak{p})$ is odd, then one can take $w_0 = -b/(2c) \in \mathfrak{o}$ since $\sqrt{d} \in \mathfrak{p}_L$. Then
For any \(w \in \mathfrak{o}/\mathfrak{p}, w \neq w_0 \), we have \(\alpha + w \in \mathfrak{o}^\times_L \). Now (3-8) gives (ii-b) of the lemma. Next assume that \((\frac{L}{p}) = 1\). Since \(\sqrt{d} \in \mathfrak{o}^\times \) by assumption, we have \(\alpha \notin \mathfrak{p} \). If \(\alpha + w \notin \mathfrak{o}^\times_L \) for some \(w \in \mathfrak{o} \), then we have one of \((b \pm \sqrt{d})/(2c) + w \) lies in \(\mathfrak{p} \). Hence, we see that the only choices of \(w = (w, w) \) such that \(\alpha + w \notin \mathfrak{o}^\times_L \) are \(w = (-b \pm \sqrt{d})/(2c) \). Note that \(\sqrt{d} \in \mathfrak{o}^\times \) implies that \((b \pm \sqrt{d})/(2c) \) are not equal modulo \(\mathfrak{p} \). This completes the proof of the lemma.

In the case \((\frac{L}{p}) = 0\), (3-9) implies that \(\beta^0_{w_0} \in \mathfrak{p} \) but \(\beta^0_{w_0} \notin \mathfrak{p}^2 \) by Lemma 2.1. The disjointness of all the relevant double cosets can be checked easily. We summarize in the following proposition.

Proposition 3.3. Let \(W \) be the Weyl group of \(\text{Sp}_4(F) \) and set

\[
W^{(1)} = \{1, s_2, s_2s_1, s_2s_1s_2\}.
\]

If \((\frac{L}{p}) = 0\), let \(w_0 \) be the unique element of \(\mathfrak{o}/\mathfrak{p} \) such that \(\alpha + w_0 \in \mathfrak{p}_L \). If \#(\(\mathfrak{o}/\mathfrak{p} \)) is odd, then take \(w_0 = -b/(2c) \). We have the disjoint double coset decomposition

\[
R(F)h(l, m)K^H = \begin{cases}
\sqcup_{s \in W} R(F)h(l, m)sI & \text{if } m > 0; \\
\sqcup_{s \in W^{(1)}} R(F)h(l, 0)sI & \text{if } m = 0, (\frac{L}{p}) = -1; \\
\sqcup_{s \in W^{(1)}} (R(F)h(l, 0)sI \sqcup R(F)h(l, 0)W_{w_0} s_1 sI) & \text{if } m = 0, (\frac{L}{p}) = 0; \\
\sqcup_{s \in W^{(1)}} (R(F)h(l, 0)sI \sqcup R(F)h(l, 0)W_{-b+\sqrt{d}/2c}s_1 sI) & \text{if } m = 0, (\frac{L}{p}) = 1.
\end{cases}
\]

3.2. Necessary conditions for values of \(B \in B(\Lambda, \theta)^1 \). We will now obtain the necessary conditions on the values of \(B \in B(\Lambda, \theta)^1 \) on the double coset representatives from Proposition 3.3 using the I-invariance of \(B \) and (3-3)-(3-6).

Conductor of \(\Lambda \): We define

\[
(3-10) \quad c(\Lambda) = \min\{m \geq 0 : \Lambda|_{(1+\mathfrak{p}^m)\cap \mathfrak{o}^\times_L} \equiv 1\}.
\]

Note that \((1 + \mathfrak{p}^m) \cap \mathfrak{o}^\times_L = 1 + \mathfrak{p}^m \) if \(m \geq 1 \) and \((1 + \mathfrak{p}^m) \cap \mathfrak{o}^\times_L = \mathfrak{o}^\times_L \) if \(m = 0 \). Also, \(c(\Lambda) \) is the conductor of \(\Lambda \) only if \((\frac{L}{p}) = -1\). We set \(c(\Lambda) = m_0 \). Since \(\Lambda \) is trivial on \(F^\times \), we see that \(\Lambda|_{(\mathfrak{o}^\times + \mathfrak{p}^m)\cap \mathfrak{o}^\times_L} \equiv 1 \). Observe that if \(L \) is a field, then we have \(L^\times = \langle \mathfrak{o} \rangle \cdot \mathfrak{o}^\times_L \). If \((\frac{L}{p}) = -1 \) and \(m_0 = 0 \), then we have that \(\Lambda(\mathfrak{o}_L) = 1 \), since \(\mathfrak{o}_L \subset \mathfrak{p} \mathfrak{o}^\times_L \). In case \((\frac{L}{p}) = 0 \) and \(m_0 = 0 \), we see that \(\Lambda(\mathfrak{o}_L) = \pm 1 \). In general, if \(L \) is a field, we see that \(\Lambda \) is a unitary character since \(m_0 \) is finite. On the other hand, if \(L \) is not a field, then \(L^\times = F^\times \oplus F^\times \) and \(\Lambda((x, y)) = \Lambda_1(x)\Lambda_2(y) \), where
\(\Lambda_1, \Lambda_2 \) are two characters of \(F^\times \) satisfying \(\Lambda_1, \Lambda_2 \equiv 1 \). In this case, \(m_0 \) is the conductor of both \(\Lambda_1, \Lambda_2 \) and the character \(\Lambda \) need not be unitary.

In the next lemma, we will describe some coset representatives, which will be used in the evaluation of certain sums involving the character \(\Lambda \).

Lemma 3.4. Let \(m \geq 1 \). A set of coset representatives for

\[
((\mathfrak{o}^\times + \mathfrak{P}^{m-1}) \cap \mathfrak{o}_L^\times)/(\mathfrak{o}^\times + \mathfrak{P}^m)
\]

is given by \(\{w + \alpha \omega \omega^{-m-1} : w \in (\mathfrak{o}/\mathfrak{p})^\times \} \cup \{1\} \) if \(m \geq 2 \) and \(\{w + \alpha : w \in \mathfrak{o}/\mathfrak{p}, w + \alpha \in \mathfrak{o}_L^\times \} \cup \{1\} \) if \(m = 1 \).

Proof. Let \(x + \alpha \omega \omega^{-m-1} y \in (\mathfrak{o}^\times + \mathfrak{P}^{m-1}) \cap \mathfrak{o}_L^\times \), with \(x, y \in \mathfrak{o}^\times \). If \(m \geq 2 \), then \(x \in \mathfrak{o}^\times \).

If \(y \in \mathfrak{p} \), then \(x + \alpha \omega \omega^{-m-1} y \in (\mathfrak{o}^\times + \mathfrak{P}^m) \), and hence corresponds to the coset representative 1. Now, we assume that \(y \in \mathfrak{o}^\times \). Then, using \(y \in \mathfrak{o}^\times + \mathfrak{P}^m \), we see that \(x + \alpha \omega \omega^{-m-1} y \) is equivalent to \(x/y + \alpha \omega \omega^{-m-1} \) modulo \((\mathfrak{o}^\times + \mathfrak{P}^m) \). Note that \(x/y + \alpha \omega \omega^{-m-1} \in \mathfrak{o}_L^\times \) implies that, modulo \(\mathfrak{p} \), the element \(x/y \) lies in

\[
\begin{cases}
(\mathfrak{o}/\mathfrak{p})^\times & \text{if } m \geq 2, \\
\mathfrak{o}/\mathfrak{p} & \text{if } m = 1, \left(\frac{L}{\mathfrak{p}}\right) = -1 \\
\mathfrak{o}/\mathfrak{p} - \{w_0\} & \text{if } m = 1, \left(\frac{L}{\mathfrak{p}}\right) = 0, \\
\mathfrak{o}/\mathfrak{p} - \{(-b \pm \sqrt{d})/(2c)\} & \text{if } m = 1, \left(\frac{L}{\mathfrak{p}}\right) = 1.
\end{cases}
\]

(3-11)

This follows from the proof of Lemma 3.2. A calculation shows that if \(w, w' \) are equivalent, modulo \(\mathfrak{p} \), to (not necessarily the same) elements in the sets defined in (3-11), then

\(w \equiv w' \pmod{\mathfrak{p}} \) if and only if \((w + \alpha \omega \omega^{-m-1})/(w' + \alpha \omega \omega^{-m-1}) \in \mathfrak{o}^\times + \mathfrak{P}^m \).

This completes the proof of the lemma. \(\square \)

Depending on the \(c(\Lambda) = m_0 \), certain values of \(B \) have to be zero. This is obtained in the next lemma.

Lemma 3.5. For any \(l \in \mathbb{Z} \), we have \(B(h(l, m)s) = 0 \), if any of the following conditions are satisfied.

- i) \(m \leq m_0 - 2, m_0 \geq 2, s = 1; \)
- ii) \(m = 0, \left(\frac{L}{\mathfrak{p}}\right) = 1, m_0 \geq 1, s \in \{W_{w}s_1 : w = (-b \pm \sqrt{d})/(2c)\}; \)
- iii) \(m = 0, \left(\frac{L}{\mathfrak{p}}\right) = 0, \Lambda = \Omega \circ N_{L/F}, m_0 = 0, s = W_{w_0}s_1s_2; \)
- iv) \(m = 0, \left(\frac{L}{\mathfrak{p}}\right) = -1, m_0 = 0, s = 1. \)

Proof. We illustrate the proof of (i) here. Let \(m \leq m_0 - 2 \). Let

\[
1 + x + \alpha y \in 1 + \mathfrak{P}^{m+1}, \quad \text{with } x, y \in \mathfrak{p}^{m+1},
\]
be such that $\Lambda(1 + x + \alpha y) \neq 1$. Let

$$k = \begin{bmatrix}
 c(1+x) + by & cy\sigma^{-m} \\
 -ay\sigma^m & c(1+x) \\
 c(1+x) & ay\sigma^m \\
 -cy\sigma^m & c(1+x) + by
\end{bmatrix} \in I.$$

Then

$$B(h(l, m)) = B(h(l, m)k) = B\left(\begin{bmatrix}
 c(1+x) + by & cy \\
 -ay & c(1+x) \\
 c(1+x) & ay \\
 -cy & c(1+x) + by
\end{bmatrix} h(l, m)\right)$$

$$= \Lambda(1 + x + \alpha y) B(h(l, m)),$$

which implies that $B(h(l, m)) = 0$, as required. The other cases are computed in a similar manner. □

From Lemmas 3.4 and 3.5(i), we obtain information on certain character sums involving Λ:

Lemma 3.6. For any l, we have

$$\sum_{w \in (\mathfrak{o}/p)^\times} \Lambda(w + \alpha \omega^m) B(h(l, m)) + B(h(l, m)) = \begin{cases} 0 & \text{if } 0 < m < m_0, \\
q B(h(l, m)) & \text{if } m \geq m_0, m > 0; \end{cases}$$

$$\sum_{\substack{w \in \mathfrak{o}/p \\
w + \alpha \in \mathfrak{o}_L^\times}} \Lambda(w + \alpha) B(h(l, 0)) + B(h(l, 0)) = \begin{cases} 0 & \text{if } m_0 \geq 1, \\
(q - \left(\frac{l}{p}\right)) B(h(l, 0)) & \text{if } m_0 = 0. \end{cases}$$

Conductor of ψ. Since the conductor of ψ is \mathfrak{o}, we obtain the following further vanishing conditions on the values of B.

Lemma 3.7. For $m \geq 0$, we have $B(h(l, m)s) = 0$ if one of the following conditions are satisfied:

i) $l < 0$, $s \in \{1, s_1, s_2, s_2s_1\}$;

ii) $l < -1$, $s \in \{s_1s_2, s_1s_2s_1, s_2s_1s_2, s_1s_2s_1s_2\}$.

For $w \in \mathfrak{o}$, we have $B(h(l, 0)Wws) = 0$ if one of the following conditions are satisfied:

i) $l < 0$, $s = s_1$;

ii) $l < -1$, $s \in \{s_1s_2, s_1s_2s_1, s_1s_2s_1s_2\}$.

If $\left(\frac{l}{p}\right) = 1$ and $w = \frac{-b \pm \sqrt{d}}{2c}$, then $B(h(-1, 0)Wws_1s_2) = 0$.

Proof. We illustrate the proof for the case \(m \geq 0, l < 0, s \in \{1, s_1, s_2, s_2s_1\} \). For any \(\epsilon \in \mathfrak{o}^\times \), set

\[
k_s^\epsilon = \begin{bmatrix} 1 & 1 & \epsilon \\ 1 & 1 & 1 \end{bmatrix}
\]

if \(s = 1, s_2 \) and \(k_s^\epsilon = \begin{bmatrix} 1 & \epsilon \\ 1 & 1 \end{bmatrix} \) if \(s = s_1, s_2s_1 \).

Then, for \(s \in \{1, s_1, s_2, s_2s_1\} \) and \(\epsilon \in \mathfrak{o}^\times \), we obtain

\[
B(h(l, m)s) = B(h(l, m)sk_s^\epsilon)
\]

\[
= B \left(\begin{bmatrix} 1 & \epsilon \omega^l \\ 1 & 1 \end{bmatrix} h(l, m)s \right) = \psi(c\epsilon\omega^l)B(h(l, m)s).
\]

Since the conductor of \(\psi \) is \(\mathfrak{o} \), we conclude that \(B(h(l, m)s) = 0 \) if \(l < 0 \). The other cases are computed in a similar manner.

Values of \(B \) using (3-4). Substituting \(h = h(l, m)s_1 \) in (3-4) and using Lemmas 3.1, 3.2 and 3.6, we get, for any \(l \),

\[
B(h(l, m)s_1) = \begin{cases} 0 & \text{if } m < m_0 \text{ and } m > 0, \\ -qB(h(l, m)) & \text{if } m \geq m_0 \text{ and } m > 0; \end{cases}
\]

\[
B(h(l, 0)W_{w_0}s_1) = \begin{cases} 0 & \text{if } m_0 \geq 1, \\ -qB(h(l, 0)) & \text{if } m_0 = 0; \end{cases}
\]

\[
B(h(l, 0)W_{-b+\sqrt{d}s_1}) + B(h(l, 0)W_{-b-\sqrt{d}s_1}) = -(q - 1)B(h(l, 0)) \quad \text{if } m_0 = 0.
\]

Substituting \(h = h(l, m)s_2s_1 \) in (3-4) and using that the conductor of \(\psi \) is \(\mathfrak{o} \), we get for any \(l, m \)

\[
B(h(l, m)s_2s_1) = -\frac{1}{q}B(h(l, m)s_2).
\]

Substituting \(h = h(l, m)s_1s_2s_1 \) in (3-4) and using that the conductor of \(\psi \) is \(\mathfrak{o} \), we get for any \(m > 0 \) and \(l \)

\[
B(h(l, m)s_1s_2s_1) = -\frac{1}{q}B(h(l, m)s_1s_2).
\]

Let \(\left(\frac{l}{p} \right) = 0 \). Substituting \(h = h(-1, 0)W_{w_0}s_1s_2s_1 \) in (3-4) and using that the conductor of \(\psi \) is \(\mathfrak{o} \) and \(b + 2cw_0 \in \mathfrak{p} \), we get

\[
B(h(-1, 0)W_{w_0}s_1s_2s_1) = -\frac{1}{q}B(h(-1, 0)W_{w_0}s_1s_2).
\]
Let \(\left(\frac{l}{p} \right) = 1 \) and \(w = (-b \pm \sqrt{d})/(2c) \). Substituting \(h = h(l, 0) W_{w, s_1 s_2 s_1} \) in (3-4) and using that the conductor of \(\psi \) is \(\sigma \) and \(\sqrt{d} \in \sigma^\times \), we get for \(l \neq -1 \)

\[
(3-17) \quad B(h(l, m) W_{w, s_1 s_2 s_1}) = -\frac{1}{q} B(h(l, m) W_{w, s_1 s_2}).
\]

Values of \(B \) using (3-6). Substituting \(h = h(l, m) s_2 \) in (3-6) and using that the conductor of \(\psi \) is \(\sigma \), we get for any \(l, m \)

\[
(3-18) \quad B(h(l, m) s_2) = -\frac{1}{q} B(h(l, m)).
\]

Substituting \(h = h(l, m) s_2 s_1 s_2 \) in (3-6) and using that the conductor of \(\psi \) is \(\sigma \), we get for \(l \neq -1 \)

\[
(3-19) \quad B(h(l, m) s_2 s_1 s_2) = -\frac{1}{q} B(h(l, m) s_2 s_1).
\]

Set

\[
w = \begin{cases}
0 & \text{if } m > 0, \\
\eta_0 & \text{if } m = 0, \left(\frac{l}{p} \right) = 0, \\
\frac{-b \pm \sqrt{d}}{2c} & \text{if } m = 0, \left(\frac{l}{p} \right) = 1.
\end{cases}
\]

Substituting \(h = h(l, m) W_{w, s_1 s_2} \) in (3-6) and using that the conductor of \(\psi \) is \(\sigma \), we get for \(l \neq -1 \)

\[
(3-20) \quad B(h(l, m) W_{w, s_1 s_2}) = -\frac{1}{q} B(h(l, m) W_{w, s_1}).
\]

Substituting \(h = h(l, m) W_{w, s_1 s_2 s_1 s_2} \) in (3-6) and using that the conductor of \(\psi \) is \(\sigma \), we get for all \(l, m \)

\[
(3-21) \quad B(h(l, m) W_{w, s_1 s_2 s_1 s_2}) = -\frac{1}{q} B(h(l, m) W_{w, s_1 s_2 s_1}).
\]

Values of \(B \) using (3-5). For any \(l, m, w \) we have the matrix identities

\[
(3-22) \quad h(l, m) s_2 s_1 \eta_0 = h(l-1, m+1) s_1 s_2 s_1 \begin{bmatrix} 1 & \end{bmatrix},
\]

\[
(3-23) \quad h(l, m) W_{w, s_1 s_2 s_1 s_2} \eta_0 = h(l+1, m) W_{w, s_1} \begin{bmatrix} 1 & \end{bmatrix},
\]

\[
(3-24) \quad h(l, m) s_2 s_1 s_2 \eta_0 = h(l+1, m) \begin{bmatrix} 1 & \end{bmatrix}.
\]
Hence, by (3-5), we have

\begin{align}
(3-25) & \quad B(h, m)s_2s_1 = \omega B(h-1, m+1)s_1s_2s_1, \\
(3-26) & \quad B(h, m)W_{w}s_1s_2s_1s_2 = \omega B(h+1, m)W_{w}s_1, \\
(3-27) & \quad B(h, m)s_2s_1s_2 = \omega B(h+1, m).
\end{align}

Using (3-24) we see that

\begin{align*}
B(h, 0)W_{\frac{-b+\sqrt{d}}{2c}s_1s_2} = \omega B(h, 0)W_{\frac{-b+\sqrt{d}}{2c}s_1s_1\eta_0} \\
= \omega B \left(h, 0 \right) W_{\frac{-b+\sqrt{d}}{2c}} \begin{bmatrix} 1 & \sigma \\ \sigma & 1 \end{bmatrix} s_2.
\end{align*}

Let \(x = \sqrt{d}/2 + \omega r \), \(y = 1 \), \(g = \begin{bmatrix} x + by/2 \\ cy \\ -ay \\ x - by/2 \end{bmatrix} \), and \(r = \begin{bmatrix} g \\ \det(g)g^{-1} \end{bmatrix} \).
We have the matrix identity

\begin{align*}
\begin{bmatrix} 1 & \sigma \\ \sigma & 1 \end{bmatrix} \begin{bmatrix} \sqrt{d}/c \\ -\sqrt{d}/c \\ \sigma \\ \sigma \end{bmatrix} = 1
\end{align*}

with \(k = \begin{bmatrix} \sqrt{d}/c \\ -\sqrt{d}/c \\ 1 \\ -1 \end{bmatrix} \in I. \)

This gives us

\begin{align}
(3-28) & \quad B(h, 0)W_{\frac{-b-\sqrt{d}}{2c}s_1s_2} = \omega \Lambda((\sqrt{d} + \omega, \omega)) B(h, 0)W_{-\frac{b-\sqrt{d}}{2c}s_1s_2}.
\end{align}

Summary. Using (3-15), (3-18), (3-19) and (3-27) we get for \(l, m \geq 0 \)

\begin{align}
(3-29) & \quad B(h+1, m) = -\frac{\omega}{q^3} B(h, m).
\end{align}

Using (3-12), (3-15), (3-16), (3-18), (3-20), (3-25) and (3-29), we get for \(l \geq 0 \) and \(m \geq m_0 - 1 \)

\begin{align}
(3-30) & \quad B(h+1, m+1) = \frac{1}{q^4} B(h, m).
\end{align}

Hence, we conclude that

\begin{align}
(3-31) & \quad B(h, m) = \\
& \begin{cases}
0 & \text{if } l \leq -1 \text{ or } 0 \leq m \leq m_0-2, \\
q^{-4(m-m_0+1)}(-\omega q^{-3})^l B(h, m_0-1) & \text{if } l \geq 0 \text{ and } m \geq m_0-1 > 0, \\
q^{-4m}(-\omega q^{-3})^l B(1) & \text{if } l \geq 0 \text{ and } m \geq m_0 = 0, 1.
\end{cases}
\end{align}
Let \(\left(\frac{L}{p} \right) = 1 \) and \(w = (-b \pm \sqrt{d})/(2c) \). Using (3-17), (3-20), (3-21) and (3-26), we get for \(l \geq 0 \), \(B(h(l + 1, 0)W_{w}s_1) = (-\omega q^{-3})B(h(l, 0)W_{w}s_1) \), which gives us

\[
B(h(l, 0)W_{w}s_1) = (-\omega q^{-3})^l B(W_{w}s_1).
\]

In addition, if \(m_0 = 0 \) and \(\omega \Lambda((1, \sigma)) = -1 \), using (3-14), (3-20) and (3-28), we get for all \(l \geq 0 \)

\[
B(h(l, 0)) = 0.
\]

Summarizing the calculations of the values of \(B \), we obtain

Proposition 3.8. Let \(c(\Lambda) = m_0 \). For \(l, m \in \mathbb{Z}, m \geq 0 \), we set

\[
A_{l,m} := \begin{cases}
q^{-4(m-m_0+1)}(-\omega q^{-3})^l & \text{if } m_0 \geq 1, \\
q^{-4m}(-\omega q^{-3})^l & \text{if } m_0 = 0,
\end{cases}
\]

\[
C_{m_0} := \begin{cases}
B(h(0, m_0 - 1)) & \text{if } m_0 \geq 1, \\
B(1) & \text{if } m_0 = 0.
\end{cases}
\]

We have the following necessary conditions on the values of \(B \in B(\Lambda, \theta)^1 \).

i) For \(m \geq 0 \) and any \(m_0 \),

a) \[
B(h(l, m)) = \begin{cases}
0 & \text{if } l \leq -1 \text{ or } m \leq m_0 - 2, \\
A_{l,m}C_{m_0} & \text{if } l \geq 0 \text{ and } m \geq m_0 - 1.
\end{cases}
\]

b) \[
B(h(l, m)s_2) = \begin{cases}
0 & \text{if } l \leq -1 \text{ or } m \leq m_0 - 2, \\
-q^{-1}A_{l,m}C_{m_0} & \text{if } l \geq 0 \text{ and } m \geq m_0 - 1.
\end{cases}
\]

c) \[
B(h(l, m)s_2s_1) = \begin{cases}
0, & \text{if } l \leq -1 \text{ or } m \leq m_0 - 2, \\
-q^{-2}A_{l,m}C_{m_0}, & \text{if } l \geq 0 \text{ and } m \geq m_0 - 1.
\end{cases}
\]

d) \[
B(h(l, m)s_2s_1s_2) = \begin{cases}
0, & \text{if } l \leq -2 \text{ or } m \leq m_0 - 2, \\
\omega A_{0,m}C_{m_0}, & \text{if } l = -1 \text{ and } m \geq m_0 - 1, \\
-q^{-3}A_{l,m}C_{m_0}, & \text{if } l \geq 0 \text{ and } m \geq m_0 - 1.
\end{cases}
\]

ii) For \(m > 0 \) and any \(m_0 \),

a) \[
B(h(l, m)s_1) = \begin{cases}
0 & \text{if } l \leq -1 \text{ or } m \leq m_0 - 1, \\
-qA_{l,m}C_{m_0} & \text{if } l \geq 0 \text{ and } m \geq m_0.
\end{cases}
\]

b) \[
B(h(l, m)s_1s_2) = \begin{cases}
0 & \text{if } l \leq -2 \text{ or } m \leq m_0 - 1, \\
-\omega q^3A_{0,m}C_{m_0}, & \text{if } l = -1 \text{ and } m \geq m_0, \\
A_{l,m}C_{m_0}, & \text{if } l \geq 0 \text{ and } m \geq m_0.
\end{cases}
\]

c) \[
B(h(l, m)s_1s_2s_1) = \begin{cases}
0, & \text{if } l \leq -2 \text{ or } m \leq m_0 - 1, \\
\omega q^2A_{0,m}C_{m_0}, & \text{if } l = -1 \text{ and } m \geq m_0, \\
-q^{-1}A_{l,m}C_{m_0}, & \text{if } l \geq 0 \text{ and } m \geq m_0.
\end{cases}
\]
Let $m_0 \geq 1$.

a) If $\left(\frac{L}{p}\right) = 0$ and $s \in \{1, s_2, s_2s_1, s_2s_1s_2\}$, then, for all l,

$$B(h(l, 0) W_{w_0s_1s}) = 0.$$

b) If $\left(\frac{L}{p}\right) = 1$, $s \in \{1, s_2, s_2s_1, s_2s_1s_2\}$ and $w = \frac{-b+\sqrt{d}}{2c}$, then, for all l,

$$B(h(l, 0) W_{w_1s_1s}) = 0.$$

d) $B(h(l, m) s_1s_2s_1s_2) = \begin{cases} 0 & \text{if } l \leq -2 \text{ or } m \leq m_0 - 1, \\ -\omega q A_{0,m} C_m & \text{if } l = -1 \text{ and } m \geq m_0, \\ q^{-2} A_{l,m} C_m & \text{if } l \geq 0 \text{ and } m \geq m_0. \end{cases}$

iv) Let $m_0 = 0$.

a) If $\left(\frac{L}{p}\right) = -1$ then $C_0 = 0$.

b) Suppose $\left(\frac{L}{p}\right) = 0$. Then

1) $B(h(l, 0) W_{w_0s_1}) = \begin{cases} 0 & \text{if } l \leq -1, \\ -q A_{l,0} C_0 & \text{if } l \geq 0. \end{cases}$

2) $B(h(l, 0) W_{w_0s_1s_2}) = \begin{cases} 0 & \text{if } l \leq -2, \\ -\omega q^3 C_0 & \text{if } l = -1, \\ A_{l,0} C_0, & \text{if } l \geq 0. \end{cases}$

3) $B(h(l, 0) W_{w_0s_1s_2s_1}) = \begin{cases} 0 & \text{if } l \leq -2, \\ \omega q^2 A_{l+1,0} C_0, & \text{if } l \geq -1. \end{cases}$

4) $B(h(l, 0) W_{w_0s_1s_2s_1s_2}) = \begin{cases} 0 & \text{if } l \leq -2, \\ -\omega q A_{l+1,0} C_0, & \text{if } l \geq -1. \end{cases}$

c) Suppose $\left(\frac{L}{p}\right) = 0$ and $\Lambda = \Omega \circ N_{L/F}$. Then $C_0 = 0$.

d) Suppose $\left(\frac{L}{p}\right) = 1$. Then for $s \in \{1, s_2, s_2s_1, s_2s_1s_2\}$

$$B(h(l, 0) W_{-b+\sqrt{d}/2c}^s s_1s) = \frac{1}{\omega\Lambda((1,\sigma))} B(h(l, 0) W_{-b+\sqrt{d}/2c}^s s_1s).$$

e) Suppose $\left(\frac{L}{p}\right) = 1$ and $\omega \Lambda((1,\sigma)) = -1$.

1) $C_0 = 0$.

2) $B(h(l, 0) W_{-b+\sqrt{d}/2c}^s s_1) = \begin{cases} 0 & \text{if } l \leq -1, \\ A_{l,0} B(W_{-b+\sqrt{d}/2c}^s s_1) & \text{if } l \geq 0. \end{cases}$

3) $B(h(l, 0) W_{-b+\sqrt{d}/2c}^s s_2) = \begin{cases} 0 & \text{if } l \leq -1, \\ -\frac{1}{q} A_{l,0} B(W_{-b+\sqrt{d}/2c}^s s_1) & \text{if } l \geq 0. \end{cases}$
4) \[B(h(l, 0) W_{-b + \sqrt{d}s_1 s_2 s_1}) = \begin{cases} 0 & \text{if } l \leq -2, \\ -\omega A_{l+1,0} B(W_{-b + \sqrt{d}s_1}) & \text{if } l \geq -1. \end{cases} \]

5) \[B(h(l, 0) W_{-b + \sqrt{d}s_1 s_2 s_1 s_2}) = \begin{cases} 0 & \text{if } l \leq -2, \\ \omega A_{l+1,0} B(W_{-b + \sqrt{d}s_1}) & \text{if } l \geq -1. \end{cases} \]

f) Suppose \(\frac{l}{2} = 1 \) and \(\omega \Lambda((1, \sigma)) \neq -1 \). Set \(\nu = \frac{q-1}{1+\omega \Lambda((1, \sigma))} \).

1) \[B(h(l, 0) W_{-b + \sqrt{d}s_1}) = \begin{cases} 0 & \text{if } l \leq -1, \\ -\nu A_{l,0} C_0, & \text{if } l \geq 0. \end{cases} \]

2) \[B(h(l, 0) W_{-b + \sqrt{d}s_1 s_2}) = \begin{cases} 0 & \text{if } l \leq -1, \\ q^{-1} \nu A_{l,0} C_0, & \text{if } l \geq 0. \end{cases} \]

3) \[B(h(l, 0) W_{-b + \sqrt{d}s_1 s_2 s_1}) = \begin{cases} 0 & \text{if } l \leq -2, \\ \omega q \nu A_{l+1,0} C_0, & \text{if } l \geq -1. \end{cases} \]

4) \[B(h(l, 0) W_{-b + \sqrt{d}s_1 s_2 s_1 s_2}) = \begin{cases} 0 & \text{if } l \leq -2, \\ -\omega \nu A_{l+1,0} C_0 & \text{if } l \geq -1. \end{cases} \]

Corollary 3.9. For any character \(\Lambda \), we have

\[\dim(B(\Lambda, \theta)^1) \leq 1. \]

3.3. Well-definedness of \(B \). In this section, we will show that a function \(B \) on \(H(F) \), which is right \(I \)-invariant, satisfies (3-3) and with values on the double coset representatives of \(R(F) \backslash H(F)/I \) given by Proposition 3.8, is well defined. Hence, we have to show that

\[r_1 s k_1 = r_2 s k_2 \Rightarrow B(r_1 s k_1) = B(r_2 s k_2) \]

for \(r_1, r_2 \in R(F), k_1, k_2 \in I \) and any double coset representative \(s \). This is obtained in the following proposition.

Proposition 3.10. Let \(s \) be any double coset representative from Proposition 3.3 and the values \(B(s) \) be as in Proposition 3.8. Let \(t \in T(F), u \in U(F) \) such that \(s^{-1} t u s \in I \). Then

\[\Lambda(t) \theta(u) = 1 \quad \text{or} \quad B(s) = 0. \]

Proof. Let

\[t = \begin{bmatrix} g & \det(g) g^{-1} \\ \end{bmatrix} \quad \text{and} \quad u = \begin{bmatrix} 1 & X \\ 1 \\ \end{bmatrix}, \]

with

\[g = \begin{bmatrix} x + by/2 & cy \\ -ay & x - by/2 \end{bmatrix} \quad \text{and} \quad X = t X. \]
First let $s = h(l, m)$. Observe that
\[x + y \frac{\sqrt{d}}{2} = x - \frac{by}{2} + cy\alpha. \]
(\text{In the split case, we consider the same identity with } (x + y\sqrt{d}/2, x - y\sqrt{d}/2)).

We assume $s^{-1}tus \in I$. We see that $x \pm by/2 \in o^\times$, $y \in p^{m+1}$ and $x + \sqrt{d}y/2 \in o^\times + p^{m+1}$. Hence, we conclude that $g \in GL_2(o)$. This gives us
\[X \in \left[\begin{array}{cc} p^{l+2m} & p^{l+m} \\ p^{l+m} & p^l \end{array} \right]. \]

Now looking at the values of $B(h(l, m))$ from Proposition 3.8, we get that either $B(s) = 0$ or $\Lambda(t) = \theta(u) = 1$.

We will illustrate one other case, $s = h(l, 0)W_0s_1s_2$, since it is the most complicated. Here, w_0 is the unique element of o/p such that $w_0 + \alpha \notin o_L^\times$. If $m_0 \geq 1$ or $l \leq -2$, then we have $B(s) = 0$. Hence, assume that $m_0 = 0$ and $l \geq -1$. Note that $x + y\sqrt{d}/2 = x - by/2 - cw_0y + c(w_0 + \alpha)y$ and $a + bw_0 + cw_0^2 \in p$. We see that $s^{-1}tus \in I$ implies that
\[y \in o \quad \text{and} \quad x \pm \left(\frac{b}{2} + cw_0 \right)y \in o^\times. \]

Hence, we see that $x + y\sqrt{d}/2 \in o_L^\times$. This implies that $g \in GL_2(o)$ and $\Lambda(t) = 1$. We have
\[\left[\begin{array}{cc} 1 & -w_0 \\ -w_0 & 1 \end{array} \right] gX \left[\begin{array}{cc} 1 & -w_0 \\ -w_0 & 1 \end{array} \right] = \left[\begin{array}{cc} p^l & p^l \\ p^l & p^{l+1} \end{array} \right]. \]

If $l \geq 0$, then we get $\theta(u) = 1$, as required. If $l = -1$, then let
\[\left[\begin{array}{cc} 1 & -w_0 \\ -w_0 & 1 \end{array} \right] gX \left[\begin{array}{cc} 1 & -w_0 \\ -w_0 & 1 \end{array} \right] = \left[\begin{array}{cccc} x_1 & x_2 \\ x_3 & x_4 \end{array} \right], \quad \text{with } x_1, x_2, x_3 \in o^{-1}a, \ x_4 \in o. \]

Set $\epsilon_1 = x + (b/2 + cw_0)y, \epsilon_2 = x - (b/2 + cw_0)y$. Using the fact that X is symmetric and $\beta_{w_0}^0 \in p$, we conclude that $x_3\epsilon_1 - x_2\epsilon_2 \in o$. Now $\theta(u) = \psi(tr(SX))$ is equal to
\[
\psi\left(\frac{1}{\det(g)}\left(a\left((-b/2)x_1 - yc(x_3 + w_0x_1)\right) + b\left(yax_1 + \left(x + \frac{by}{2}\right)(x_3 + w_0x_1)\right) + c(ya(x_2 + w_0x_1) + \left(x + \frac{by}{2}\right)(w_0^2x_1 + w_0(x_2 + x_3) + x_4))\right)\right)
= \psi\left(\frac{1}{\det(g)}\left((x + \frac{by}{2})(x_1\beta_{w_0}^0 + cx_4) + x_2\beta_{w_0}^0, yc - x_3\beta_{w_0}^0, yc + (x_2\epsilon_2 - x_3\epsilon_1)cw_0 + x_3\epsilon_1(b + 2cw_0)\right)\right)
= 1.
\]
Here, we have used that \(x_3 \epsilon_1 - x_2 \epsilon_2 \in \mathfrak{o}, \ b + 2cw_0 \in \mathfrak{p}, \) and \(\psi \) is trivial on \(\mathfrak{o} \). The other cases are computed in a similar manner. \(\square \)

3.4. **Criterion for \(\dim (B(\Lambda, \theta)^l) = 1 \).** In the previous sections, we have explicitly obtained a well-defined function \(B \), which is right \(I \)-invariant and satisfies (3-3). The values of \(B \) on the double coset representatives of \(R(F) \setminus H(F)/I \) were obtained, in Proposition 3.8, using one or more of the conditions (3-4)–(3-6). To show that the function \(B \) is actually an element of \(B(\Lambda, \theta)^l \), we have to show that the conditions (3-4)–(3-6) are satisfied by \(B \) for every \(h \in H(F) \). In fact, it is sufficient to show that \(B \) satisfies these conditions when \(h \) is any double coset representative of \(R(F) \setminus H(F)/I \). The computations for checking this are long but not complicated. We will describe the calculation for \(h = h(l, m) \) below.

\[
B(h(l, m) \eta_0) = B \left(h(l, m) \begin{bmatrix} \sigma & \sigma \\ \sigma & \sigma \end{bmatrix} h(-1, 0) s_2 s_1 s_2 \right) = B(h(l - 1, m) s_2 s_1 s_2) = \omega B(h(l, m)).
\]

Here, we have used Proposition 3.8 and the identities \(A_{l-1,m} = (-\omega q^3) A_{l,m} \). Using the matrix identity

\[
\begin{bmatrix} 1 & w & 1 \\ w & 1 & -w \\ 1 & -w & 1 \end{bmatrix} = \begin{bmatrix} 1 & w^{-1} & 1 \\ w^{-1} & 1 & -w \\ -w^{-1} & -w & 1 \end{bmatrix} s_1 \begin{bmatrix} -w & -w^{-1} & 1 \\ -w^{-1} & -w & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & w^{-1} \\ w^{-1} & 1 \\ 1 & 1 \end{bmatrix}
\]

for \(w \in \mathfrak{o}, \ w \neq 0 \), Lemmas 3.1, 3.2, 3.6 and Proposition 3.8, we get

\[
\sum_{w \in \mathfrak{o}/\mathfrak{p}} B(h(l, m) s_1 W_w s_1) + B(h(l, m) s_1) = 0.
\]

Using the matrix identity

\[
\begin{bmatrix} 1 & y & 1 \\ y & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & y^{-1} \\ y^{-1} & 1 \\ 1 & 1 \end{bmatrix} s_2 \begin{bmatrix} -y & 1 & 1 \\ 1 & -y^{-1} \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & y^{-1} \\ y^{-1} & 1 \\ 1 & 1 \end{bmatrix}
\]

for \(y \in \mathfrak{o}, \ y \neq 0 \) and Proposition 3.8, we obtain

\[
\sum_{y \in \mathfrak{o}/\mathfrak{p}} B \left(h(l, m) \begin{bmatrix} 1 & y \\ y & 1 \end{bmatrix} \right) + B(h(l, m) s_2) = 0
\]

This shows that, for \(h = h(l, m) \), the function \(B \) satisfies (3-4)–(3-6), as required. The calculation for other values of \(h \) follows in a similar manner. Hence, we get the following theorem.
Theorem 3.11. Let \(\Lambda \) be a character of \(L^\times \). Let \(B(\Lambda, \theta)^1 \) be the space of smooth functions on \(H(F) \), which are right I-invariant, satisfy (3-3) and the Hecke conditions (3-4) - (3-6). Then
\[
\dim(B(\Lambda, \theta)^1) = \begin{cases}
0 & \text{if } \Lambda = \Omega \circ N_{L/F} \text{ and } \left(\frac{L}{p} \right) \in \{-1, 0\}, \\
1 & \text{otherwise.}
\end{cases}
\]

The condition on \(\Lambda \), in the case \(\left(\frac{L}{p} \right) \in \{-1, 0\} \), follows from cases (iv-a) and (iv-c) of Proposition 3.8.

3.5. Existence of a Bessel model. We now obtain the existence of a \((\Lambda, \theta)\)-Bessel model for \(\pi \). When \(\Lambda \) is a unitary character, we act with the Hecke algebra of \(H(F) \) on a nonzero function in \(B(\Lambda, \theta)^1 \). We define an inner product on this Hecke module and also show that the Hecke module has a unique, up to a constant, function which is right I-invariant (the same function that we started with). This leads to the proof that the Hecke module is irreducible and is isomorphic to \(\pi \), thus giving a \((\Lambda, \theta)\)-Bessel model for \(\pi \).

When \(\Lambda \) is not unitary (this can happen only if \(L = F \oplus F \)), we obtain a Bessel model for \(\pi \) using the Whittaker model.

The Hecke module. The Hecke algebra \(\mathcal{H} \) of \(H(F) \) is the space of all complex-valued functions on \(H(F) \) that are locally constant and compactly supported, with the convolution product defined by
\[
(f_1 \ast f_2)(g) := \int_{H(F)} f_1(h) f_2(h^{-1} g) \, dh \quad \text{for } f_1, f_2 \in \mathcal{H}, g \in H(F).
\]

We refer the reader to [Cartier 1979] for details on Hecke algebras of \(p \)-adic groups and Hecke modules. Let \(\Lambda \) be a character of \(L^\times \) such that \(B(\Lambda, \theta)^1 \neq 0 \). Let \(B \in B(\Lambda, \theta)^1 \) be the unique, up to a constant, function whose values are described in Proposition 3.8. Define the action of \(f \in \mathcal{H} \) on \(B \) by
\[
(R(f)B)(g) := \int_{H(F)} f(h) B(gh) \, dh.
\]

This is a finite sum and hence converges for all \(f \). Let
\[
V_B := \{R(f)B : f \in \mathcal{H}\}.
\]

Since \(R(f_1)R(f_2)B = R(f_1 \ast f_2)B \), we see that \(V_B \) is a Hecke module. Note that every function in \(V_B \) transforms on the left according to \(\Lambda \otimes \theta \).

Inner product on Hecke module. We now assume that \(\Lambda \) is a unitary character. Note that, by the comments in the beginning of Section 3.2, if \(L \) is a field, then \(\Lambda \) is always unitary. In this case, we will define an inner product on the space \(V_B \).

Lemma 3.12. The norm \(\langle B, B \rangle := \int_{R(F) \backslash H(F)} |B(h)|^2 \, dh \) is finite.
Proof. We have

$$\langle B, B \rangle = \sum_{s \in R(F) \setminus H(F)/I} \int_{R(F) \setminus R(F)sI} |B(h)|^2 dh$$

$$= \sum_{s \in R(F) \setminus H(F)/I} |B(s)|^2 \int_{I \setminus \{1\}} dh = \sum_{s \in R(F) \setminus H(F)/I} |B(s)|^2 \frac{\text{vol}(I)}{\text{vol}(I_s)}.$$

Here $I_s := s^{-1}R(F)s \cap I$. To get the last equality, we argue as in [Pitale and Schmidt 2009b, Lemma 3.7.1]. The volume of I_s can be computed by similar methods to Sections 3.7.1 and 3.7.2 of the same reference. Now, using the values of $B(s)$ from Proposition 3.8 and geometric series, we get the result. □

Let

$$L^2(R(F) \setminus H(F), \Lambda \otimes \theta) := \left\{ \varphi : H(F) \to \mathbb{C} \text{ such that } \varphi \text{ is smooth,} \right. \right.$$ \vspace{-15pt}

$$\left. \varphi(rh) = (\Lambda \otimes \theta)(r) \varphi(h) \text{ for } r \in R(F), \ h \in H(F), \right.$$

$$\left. \text{and } \int_{R(F) \setminus H(F)} |\varphi(h)|^2 dh < \infty. \right\}$$

The previous lemma tells us that $B \in L^2(R(F) \setminus H(F), \Lambda \otimes \theta)$. It is an easy exercise to see that, in fact, for any $f \in \mathcal{H}$, we have

$$R(f)B \in L^2(R(F) \setminus H(F), \Lambda \otimes \theta).$$

Now, we see that V_B inherits the inner product from $L^2(R(F) \setminus H(F), \Lambda \otimes \theta)$. For $f_1, f_2 \in \mathcal{H}$, we obtain

$$(3-33) \quad \langle R(f_1)B, R(f_2)B \rangle = \int_{R(F) \setminus H(F)} (R(f_1)B)(g) \overline{(R(f_2)B)(g)} dg.$$

Lemma 3.13. For $f \in \mathcal{H}$, define $f^* \in \mathcal{H}$ by $f^*(g) = \overline{f(g^{-1})}$. Then, for any $B_1, B_2 \in V_B$,

$$\langle B_1, R(f)B_2 \rangle = \langle R(f^*)B_1, B_2 \rangle.$$

Proof. The lemma follows by a formal calculation. □

Irreducibility of V_B.

Lemma 3.14. Let V_B^1 be the subspace of functions in V_B that are right 1-invariant. Then

$$\dim(V_B^1) = 1.$$

Proof. We know that V_B^1 is not trivial since $B \in V_B^1$. Let $\chi_1 \in \mathcal{H}$ be the characteristic function of I and set $f_1 := \text{vol}(I)^{-1} \chi_1$. Then, by definition, any $B' \in V_B^1$, satisfies $R(f_1)B' = B'$. Let $f \in \mathcal{H}$ be such that $B' = R(f)B = R(f * f_1)B$. Here, we have used that $B \in V_B^1$. Then

$$B' = R(f_1)B' = R(f_1)(R(f * f_1)B) = R(f_1 * f * f_1)B.$$
But $f_1 \ast f \ast f_1 \in \mathcal{H}_I$, the Iwahori Hecke algebra. Since B is an eigenfunction of \mathcal{H}_I, we see that $B' \in \mathbb{C}B$. Hence, $\dim(V_B^I) = 1$, as required. \hfill \Box

Proposition 3.15. Let $\pi = \Omega \text{St}_{\text{GSp}_4}$ be the Steinberg representation of $H(F)$, twisted by an unramified quadratic character Ω. Let Λ be a character of L^\times such that $\dim(B(\Lambda, \theta)) = 1$. Let V_B be as in (3-32). If Λ is unitary, then V_B is irreducible and isomorphic to π.

Proof. We assume, to the contrary, that V_B is reducible. Let W be an \mathcal{H}-invariant subspace. Let W^\perp be the complement of W in V_B with respect to the inner product $(\ , \)$ given in (3-33). Using Lemma 3.13, we see that W^\perp is also \mathcal{H}-invariant. Write $B = B_1 + B_2$, with $B_1 \in W$, $B_2 \in W^\perp$. Let f_1 be as defined in the proof of Lemma 3.14. Since W, W^\perp are \mathcal{H}-invariant, we see that $R(f_1)B_1 \in W$ and $R(f_1)B_2 \in W^\perp$. Since B is right I-invariant, we see that $B_1 = R(f_1)B_1$ and $B_2 = R(f_1)B_2$. By Lemma 3.14, we obtain, either $B = B_1$ or $B = B_2$. Since V_B is generated by B, we have either $W = V_B$ or $W = 0$. Hence, we see that V_B is an irreducible Hecke module, which contains a unique, up to a constant, vector which is right I-invariant. This uniquely characterizes the Steinberg representation of $H(F)$, and hence, V_B is isomorphic to π. \hfill \Box

Generic representations have split Bessel models. We now assume that Λ is not a unitary character. This can happen only if $L = F \oplus F$. In this case, we will use the fact that $\Omega \text{St}_{\text{GSp}_4}$ is a generic representation. We will now show that any irreducible admissible generic representation of $H(F)$ has a split Bessel model.

We believe that this result is known to the experts (for example, see the proof of [Takloo-Bighash 2000, Theorem 2.1]) but we present the details of the proof here.

Let $S = \begin{bmatrix} a & \frac{b}{2} \\ b & c \end{bmatrix}$ be such that $b^2 - 4ac$ is a square in F^\times. One can find a matrix $A \in \text{GL}_2(\mathcal{O})$ such that

$$S' := 'ASA = \begin{bmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}.$$

In this case, $T_{S'}(F) := \{ g \in \text{GL}_2(F) : 'gS'g = \det(g)S' \} = A^{-1}T(F)A$. The group $T_{S'}(F)$ embedded in $H(F)$ is given by

$$\left\{ \begin{bmatrix} x & y \\ y & x \end{bmatrix} : x, y \in F^\times \right\}.$$

Let θ' be the character of $U(F)$ obtained from S' and Λ' be the character of $T_{S'}(F)$ obtained from Λ. Then it is easy to see that π has a (Λ, θ)-Bessel model if and
only if it has a \((\Lambda', \theta')\)-Bessel model. So, we will assume that

\[
S = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}.
\]

Let \((\pi, V)\) be an irreducible admissible representation of \(H(F)\). For \(c_1, c_2 \in F^\times\), consider the character \(\psi_{c_1,c_2}\) of the unipotent radical \(N_1(F)\) of the Borel subgroup given by

\[
\psi_{c_1,c_2} \left(\begin{bmatrix} 1 & x & * \\ * & y & * \\ 1 & -x & 1 \end{bmatrix} \right) = \psi(c_1 x + c_2 y).
\]

The representation \(\pi\) of \(H(F)\) is called \textit{generic} if \(\text{Hom}_{N_1(F)}(\pi, \psi_{c_1,c_2}) \neq 0\). In this case there is an associated Whittaker model \(\mathcal{W}(\pi, \psi_{c_1,c_2})\) consisting of functions \(H(F) \to \mathbb{C}\) that transform on the left according to \(\psi_{c_1,c_2}\). For \(W \in \mathcal{W}(\pi, \psi_{c_1,c_2})\), there is an associated zeta integral

\[
Z(s, W) = \int_{F^\times} \int_{F} W \left(\begin{bmatrix} y \\ x \\ 1 \end{bmatrix} \right) |y|^{-s/2} dx \, d^x y.
\]

This integral is convergent for \(\text{Re}(s) > s_0\), where \(s_0\) is independent of \(W\) [Roberts and Schmidt 2007, Proposition 2.6.3]. More precisely, the integral converges to an element of \(\mathbb{C}(q^{-s})\), and therefore has meromorphic continuation to all of \(\mathbb{C}\). Moreover, there exists an \(L\)-factor of the form

\[
L(s, \pi) = \frac{1}{Q(q^{-s})}, \quad Q(X) \in \mathbb{C}[X], \quad Q(0) = 1,
\]

such that

\[
Z(s, W) \frac{L(s, \pi)}{L(s, \pi)} \in \mathbb{C}[q^{-s}, q^s] \quad \text{for all } W \in \mathcal{W}(\pi, \psi_{c_1,c_2}).
\]

(This is proved in [Roberts and Schmidt 2007, Proposition 2.6.4] for \(\pi\) with trivial central character. Also see [Takloo-Bighash 2000, §3.1])

Lemma 3.16. Let \((\pi, V)\) be an irreducible admissible generic representation of \(H(F)\) with trivial central character. Let \(\sigma\) be a unitary character of \(F^\times\), and let \(s \in \mathbb{C}\) be arbitrary. Then there exists a nonzero functional \(f_{s,\sigma} : V \to \mathbb{C}\) with the following properties.

i) For all \(x, y, z \in F\) and \(v \in V\),

\[
f_{s,\sigma} \left(\pi \left(\begin{bmatrix} 1 & x & y \\ * & y & z \\ 1 & -x & 1 \end{bmatrix} \right) v \right) = \psi(c_1 y) f_{s,\sigma}(v).
\]
ii) For all \(x \in F^\times \) and \(v \in V \),

\[
(3-36) \quad f_{s,\sigma} \left(\pi \left(\begin{bmatrix} x & 1 \\ 1 & x \end{bmatrix} \right) v \right) = \sigma(x)^{-1} |x|^{-s+1/2} f_{s,\sigma}(v).
\]

Proof. We may assume that \(V = \mathcal{W}(\pi, \psi_{c_1, c_2}) \). Let \(s_0 \in \mathbb{R} \) be such that \(Z(s, W) \) is absolutely convergent for \(\text{Re}(s) > s_0 \). Then the integral

\[
Z_\sigma(s, W) = \int_{F^\times} \int_F W \left(\begin{bmatrix} y & 1 \\ 1 & x \end{bmatrix} \right) |y|^{s-3/2} \sigma(y) \, dx \, dy
\]

is also absolutely convergent for \(\text{Re}(s) > s_0 \), since \(\sigma \) is unitary. Note that these are the zeta integrals for the twisted representation \(\sigma \pi \). Therefore, by (3-34), the quotient \(Z_\sigma(s, W)/L(s, \sigma \pi) \) is in \(\mathbb{C}[q^{-s}, q^s] \) for all \(W \in \mathcal{W}(\pi, \psi_{c_1, c_2}) \). Now, for \(\text{Re}(s) > s_0 \), we define

\[
(3-37) \quad f_{s,\sigma}(W) = \frac{Z_\sigma(s, \pi(w)W)}{L(s, \sigma \pi)}, \quad \text{where} \quad w = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.
\]

Straightforward calculations show that (3-35) and (3-36) are satisfied. For general \(s \), since the quotient (3-37) is entire, we can define \(f_{s,\sigma} \) by analytic continuation. \(\square \)

Proposition 3.17. Let \((\pi, V)\) be an irreducible admissible generic representation of \(H(F) \) with trivial central character. Then \(\pi \) admits a split Bessel functional with respect to any character \(\Lambda \) of \(T(F) \) that satisfies \(\Lambda \big|_{F^\times} \equiv 1 \).

Proof. As mentioned earlier, we can take

\[
S = \begin{bmatrix} 1/2 \\ \frac{1}{2} \end{bmatrix}.
\]

Let \(s \in \mathbb{C} \) and \(\sigma \) be a unitary character of \(F^\times \) such that

\[
\Lambda \left(\begin{bmatrix} x & 1 \\ 1 & x \end{bmatrix} \right) = \sigma(x)^{-1} |x|^{-s+1/2} \quad \text{for all} \quad x \in F^\times.
\]

Let \(f_{s,\sigma} \) be as in Lemma 3.16. We may assume that \(c_1 = 1 \), so that \(f_{s,\sigma}(\pi(u)v) = \theta(u)v \) for all \(u \in U(F) \) by (3-35). We have

\[
f_{s,\sigma} \left(\pi \left(\begin{bmatrix} x & 1 \\ 1 & x \end{bmatrix} \right) v \right) = \Lambda(x) f_{s,\sigma}(v) \quad \text{for all} \quad x \in F^\times,
\]
by (3-36). Since \(\Lambda\big|_{F^\times} \equiv 1 \) we in fact obtain \(f_{s,\sigma}(\pi(t)v) = \Lambda(t) f_{s,\sigma}(v) \) for all \(t \in T(F) \). Hence \(f_{s,\sigma} \) is a Bessel functional as desired. \hfill \Box

We remark here that, in the split case, for values of \(s \in \mathbb{C} \) outside the range of convergence of the zeta integral, we do not have an explicit formula for the Bessel functional. This, in turn, is also reflected in the fact that, when \(\Lambda \) is not unitary, it is not very easy to define an inner product on the space \(V_B \) defined in (3-32), although it is known that the Steinberg representation is square-integrable.

Main result on existence and uniqueness of Bessel models.

Theorem 3.18. Let \(\pi = \Omega \text{St}_{\text{GSp}_4} \) be the Steinberg representation of \(H(F) \), twisted by an unramified quadratic character \(\Omega \). Let \(\Lambda \) be a character of \(L^\times \) such that \(\Lambda\big|_{F^\times} \equiv 1 \). If \(L \) is a field, then \(\pi \) has a \((\Lambda, \theta)\)-Bessel model if and only if \(\Lambda \neq \Omega \circ N_{L/F} \). If \(L \) is not a field, then \(\pi \) always has a \((\Lambda, \theta)\)-Bessel model. In case \(\pi \) has a \((\Lambda, \theta)\)-Bessel model, it is unique.

In addition, if \(\pi \) has a \((\Lambda, \theta)\)-Bessel model, then the Iwahori spherical vector of \(\pi \) is a test vector for the Bessel functional if and only if \(\Lambda \) satisfies the following conditions.

i) \(\Lambda|_{1+\mathfrak{P}} \equiv 1 \), i.e., \(c(\Lambda) \leq 1 \) (see (3-10) for definition of \(c(\Lambda) \)).

ii) If \((\frac{L}{p}) = 1 \) and \(\Lambda \) is unramified, then \(\Lambda((1, \varpi)) \neq \Omega(\varpi) \).

Proof. If \(\pi \) has a \((\Lambda, \theta)\)-Bessel model, then it contains a unique vector in \(B((\Lambda, \theta)^I) \). By Theorem 3.11, the dimension of \(B((\Lambda, \theta)^I) \) is one, which gives us the uniqueness of Bessel models.

Now we will show the existence of the Bessel model. Let \(\Lambda \) be a character of \(L^\times \), with \(\Lambda|_{F^\times} \equiv 1 \), such that, if \(L \) is a field, \(\Lambda \neq \Omega \circ N_{L/F} \). We know, by Theorem 3.11, that \(\dim(B((\Lambda, \theta)^I)) = 1 \). If \(\Lambda \) is unitary, Proposition 3.15 tells us that \(V_B \) is a \((\Lambda, \theta)\)-Bessel model for \(\pi \). If \(\Lambda \) is not unitary, we use the fact that \(\pi \) is a generic representation in the split case. Then Proposition 3.17 gives us the result.

The statement regarding the test vector can be deduced from Proposition 3.8 and the fact that a Bessel function \(B \) corresponds to a test vector if and only if \(B(1) \neq 0 \). \hfill \Box

4. Integral representation of the nonarchimedean local \(L \)-function

Using the explicit values of the Bessel function obtained in Proposition 3.8, we will now obtain an integral representation of the \(L \)-function for the Steinberg representation \(\pi \) of \(H(F) \) twisted by any irreducible admissible representation \(\tau \) of \(\text{GL}_2(F) \). For this, we will use the integral obtained in [Furusawa 1993]. We briefly describe the setup.
4.1. The unitary group, parabolic induction and the local integral. Let $G = \text{GU}(2, 2; L)$ be the unitary similitude group, whose F-points are given by

$$G(F) := \{g \in \text{GL}_4(L) : {}^t\bar{g}Jg = \mu_2(g)J, \mu_2(g) \in F^\times\} \quad \text{where} \quad J = \begin{bmatrix} -1 & 2 \\ 0 & 1 \end{bmatrix}.$$

Note that $H(F) = G(F) \cap \text{GL}_4(F)$. As a minimal parabolic subgroup we choose the subgroup of all matrices that become upper triangular after switching the last two rows and last two columns. Let P be the standard maximal parabolic subgroup of $G(F)$ with a nonabelian unipotent radical. Let $P = MN$ be the Levi decomposition of P. We have $M = M^{(1)}M^{(2)}$, where

\begin{equation}
M^{(1)}(F) = \left\{ \begin{bmatrix} \zeta & 1 \\ \bar{\zeta} & -1 \\ & & 1 \end{bmatrix} : \zeta \in L^\times \right\},
\end{equation}

\begin{equation}
M^{(2)}(F) = \left\{ \begin{bmatrix} 1 & \alpha & \beta \\ & \mu & \gamma \\ & \bar{\delta} & \delta \end{bmatrix} \in G(F) \right\},
\end{equation}

\begin{equation}
N(F) = \left\{ \begin{bmatrix} 1 & \alpha & \beta \\ z & \gamma & \delta \\ -\bar{z} & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & w & y \\ \bar{y} & 1 & \bar{z} \\ & & 1 \end{bmatrix} : w \in F, \ y, z \in L \right\}.
\end{equation}

The modular factor of the parabolic P is given by

$$\delta_P \left(\begin{bmatrix} \zeta & 1 \\ \bar{\zeta} & -1 \\ & & 1 \end{bmatrix} \begin{bmatrix} 1 & \alpha & \beta \\ & \mu & \gamma \\ & \bar{\delta} & \delta \end{bmatrix} \right) = |N(\zeta)\mu^{-1}|^3 \quad (\mu = \bar{\alpha}\delta - \beta\bar{\gamma}),$$

where $| \cdot |$ is the normalized absolute value on F. Let (τ, V_τ) be an irreducible admissible representation of $\text{GL}_2(F)$, and let χ_0 be a character of L^\times such that $\chi_0|_{F^\times}$ coincides with ω_τ, the central character of τ. We assume that V_τ is the Whittaker model of τ with respect to the character ψ^{-c} (we assume that $c \neq 0$). Then the representation $(\lambda, g) \mapsto \chi_0(\lambda)\tau(g)$ of $L^\times \times \text{GL}_2(F)$ factors through $\{ (\lambda, \lambda^{-1}) : \lambda \in F^\times \}$, and consequently defines a representation of $M^{(2)}(F)$ on the same space V_τ. Let χ be a character of L^\times, considered as a character of $M^{(1)}(F)$. Extend the representation $\chi \times \chi_0 \times \tau$ of $M(F)$ to a representation of $P(F)$ by setting it to be trivial on $N(F)$. If s is a complex parameter, set $I(s, \chi, \chi_0, \tau) = \text{Ind}_{P(F)}^{G(F)}(\delta_P^{s+1/2} \times \chi \times \chi_0 \times \tau)$.

Let (π, V_π) be the twisted Steinberg representation of $H(F)$. We assume that V_π is a Bessel model for π with respect to a character $\Lambda \otimes \theta$ of $R(F)$. Let the characters χ, χ_0 and Λ be related by $\chi(\zeta) = \Lambda(\bar{\zeta})^{-1}\chi_0(\bar{\zeta})^{-1}$. Let $W^\#(\cdot, s)$ be an element of $I(s, \chi, \chi_0, \tau)$ for which the restriction of $W^\#(\cdot, s)$ to the standard maximal compact subgroup of $G(F)$ is independent of s, i.e., $W^\#(\cdot, s)$ is a “flat
section” of the family of induced representations $I(s, \chi, \chi_0, \tau)$. By [Pitale and Schmidt 2009b, Lemma 2.3.1], it is meaningful to consider the integral

$$Z(s) = \int_{R(F) \backslash H(F)} W^#(\eta h, s) B(h) \, dh, \quad \eta = \begin{bmatrix} 1 & 1 & \bar{\alpha} & 1 \\ \alpha & 1 & 1 & 1 \end{bmatrix}.$$

This is the local component of the global integral considered in Section 5.2 below.

4.2. The GL_2 newform. We define $K^{(0)}(p^0) = GL_2(o)$ and, for $n > 0$,

$$K^{(0)}(p^n) = GL_2(o) \cap \left[1 + \frac{p^n}{o} \begin{bmatrix} 0 & 0 \\ 0 & \bar{o} \end{bmatrix} \right].$$

As above, let (τ, V_τ) be a generic, irreducible admissible representation of $GL_2(F)$ such that V_τ is the ψ^{-c}-Whittaker model of τ. It is well known that V_τ has a unique (up to a constant) vector $W^{(1)}$, called the newform, that is right-invariant under $K^{(0)}(p^n)$ for some $n \geq 0$. We then say that τ has conductor p^n. We normalize $W^{(1)}$ so that $W^{(1)}(1) = 1$. We will need the values of $W^{(1)}$ evaluated at

$$\begin{bmatrix} \omega^l \\ 1 \end{bmatrix},$$

for $l \geq 0$. The following table gives these values (refer to [Schmidt 2002, §2.4]).

<table>
<thead>
<tr>
<th>τ</th>
<th>$W^{(1)}\left(\begin{bmatrix} \omega^l \ 1 \end{bmatrix}\right)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha \times \beta$ with α and β unramified, $\alpha \beta^{-1} \neq</td>
<td>\cdot</td>
</tr>
<tr>
<td>$\alpha \times \beta$ with α unramified, β ramified, $\alpha \beta^{-1} \neq</td>
<td>\cdot</td>
</tr>
<tr>
<td>supercuspidal OR ramified twist of Steinberg</td>
<td>$\begin{cases} 1 & \text{if } l = 0 \ 0 & \text{if } l > 0 \end{cases}$</td>
</tr>
<tr>
<td>OR $\alpha \times \beta$ with α, β ramified, $\alpha \beta^{-1} \neq</td>
<td>\cdot</td>
</tr>
<tr>
<td>$\Omega' \text{St}_{GL_2}$, with Ω' unramified</td>
<td></td>
</tr>
</tbody>
</table>

We extend $W^{(1)}$ to a function on $M^{(2)}(F)$ via $W^{(1)}(ag) = \chi_0(a) W^{(1)}(g)$ for $a \in L^\times$, $g \in GL_2(F)$.

4.3. Choice of Λ and $W^#$. We will choose a character Λ of L^\times such that π has a (Λ, θ)-Bessel model and the Iwahori spherical vector is a test vector for the Bessel functional. Noting that $\Lambda|_{F^\times}$ is the central character of π and using Theorem 3.18, we impose the following conditions on Λ:

i) $\Lambda|_{F^\times} \equiv 1$.

ii) $c(\Lambda) \leq 1$.
iii) \(\Lambda \neq \Omega \circ N_{L/F} \) in case \(L \) is a field.

iv) \(\omega \Lambda ((1, \sigma)) \neq -1 \) in case \(L \) is not a field and \(c(\Lambda) = 0 \).

Note that this implies that \(\Lambda|_{\sigma^* + \mathfrak{p}} \equiv 1 \). For \(n \geq 1 \), let \(\Gamma(\mathfrak{p}^n) \) be the principal congruence subgroup of the maximal compact subgroup \(K^G := G(\sigma) \) of \(G(F) \), defined by

\[
\Gamma(\mathfrak{p}^n) := \{ g \in K^G : g \equiv 1 \mod (\mathfrak{p}^n) \}.
\]

The next lemma will be crucial for the well-definedness of \(W^\# \) below.

Lemma 4.1. Let \((\tau, V_\tau)\) be a generic, irreducible admissible representation of \(GL_2(F) \) with conductor \(\mathfrak{p}^n, n \geq 0 \). Set \(n_0 = \max\{1, n\} \) and let

\[
\hat{m} = \begin{bmatrix}
\xi & a' & b' \\
\mu \xi^{-1} & c' & d'
\end{bmatrix} \in M(F) \quad \text{and} \quad \hat{n} = \begin{bmatrix}
1 & z & w \\
1 & 1 & y \\
1 & -\bar{z} & 1
\end{bmatrix} \in N(F).
\]

Suppose that \(A := \eta^{-1} \hat{m} \eta \) lies in \(\Pi(\mathfrak{p}^{n_0}) \). Then

i) \(c' \in \mathfrak{p}^{n_0} \) and \(a' \bar{\xi}^{-1} \in 1 + \mathfrak{p}^{n_0} \), and

ii) for any \(\begin{bmatrix} a'_1 & b'_1 \\ c'_1 & d'_1 \end{bmatrix} \in GU(1, 1; L)(F) \), we have

\[
\chi(\xi) W(1) \left(\begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} \right) = W(1) \left(\begin{bmatrix} a'_1 & b'_1 \\ c'_1 & d'_1 \end{bmatrix} \right).
\]

Proof. Using **Lemma 2.1**, it is easy to show that for \(n \geq 0 \)

\[
(4-6) \quad x \in \mathfrak{o} + \mathfrak{p}^n \quad \text{and} \quad \alpha x \in \mathfrak{o} + \mathfrak{p}^n \quad \Rightarrow \quad x \in \mathfrak{p}^n.
\]

First note that \(\Pi(\mathfrak{p}^{n_0}) \subset M_4(\mathfrak{o} + \mathfrak{p}^{n_0}) \). Looking at the \((4, 1), (4, 2)\) coefficient of \(A \), we see that \(c', \alpha c' \in \mathfrak{o} + \mathfrak{p}^{n_0} \). By \((4-6)\), we obtain \(c' \in \mathfrak{p}^{n_0} \), as required.

Observe that \(\hat{m} \hat{n} \in K^G \) and \(c' \in \mathfrak{p}^{n_0} \subset \mathfrak{p} \) implies that \(\xi, a', d' \in \mathfrak{o}^\times \). The upper left \(2 \times 2 \) block of \(A \) is given by

\[
\begin{bmatrix}
\xi + \alpha z \xi & z \xi \\
\alpha a' - \alpha (\xi + \alpha z \xi) & a' - \alpha z \xi
\end{bmatrix}.
\]

We will repeatedly use the following fact:

If \(x \in \mathfrak{o} + \mathfrak{p}^{n_0} \), then \(x \equiv \bar{x} \mod (\alpha - \bar{\alpha}) \mathfrak{p}^{n_0} \).

Applying this to the matrix entries of \(A \), we get \(z \xi \equiv \bar{z} \xi \mod (\alpha - \bar{\alpha}) \mathfrak{p}^{n_0} \), and then

\[
(4-7) \quad a' - a' \equiv (\alpha - \bar{\alpha}) z \xi \mod (\alpha - \bar{\alpha}) \mathfrak{p}^{n_0} \quad \text{and} \quad \zeta - \bar{\zeta} \equiv (\bar{\alpha} - \alpha) z \xi \mod (\alpha - \bar{\alpha}) \mathfrak{p}^{n_0}.
\]
Using $\zeta + \alpha \zeta \equiv \tilde{\zeta} + \tilde{\alpha} \tilde{z} \bar{\zeta} \pmod{(\alpha - \tilde{\alpha}) \mathbb{P}^{n_0}}$ and (4-7), we get from the (2, 1) coefficient of A that

$$(a' - \tilde{\zeta}) (\alpha - \tilde{\alpha}) \equiv 0 \pmod{(\alpha - \tilde{\alpha}) \mathbb{P}^{n_0}}.$$

Hence $a' - \tilde{\zeta} \equiv 0 \pmod{\mathbb{P}^{n_0}}$, so that $a' \tilde{\zeta}^{-1} \in 1 + \mathbb{P}^{n_0}$, as required. This proves part (i) of the lemma.

Looking at the (1, 2) coefficient of A, we see that $z \zeta \in \mathbb{P}$, so that $z \zeta = \zeta + \alpha \zeta \equiv \tilde{\zeta} + \tilde{\alpha} \tilde{z} \bar{\zeta} \pmod{(\alpha - \tilde{\alpha}) \mathbb{P}^{n_0}}$. Letting $\chi(\zeta) \equiv \chi(\tilde{\zeta}) \equiv \chi(\alpha \zeta) \equiv \chi(\tilde{\alpha} \tilde{z} \bar{\zeta}) \equiv 0$, we see that $\chi(\zeta) \in \sigma^\infty + \mathbb{P}$.

Using Lemma 4.1, we see that $\chi(\zeta) W(1) = \chi(\zeta) \chi_0(a') \left(\begin{bmatrix} a'_1 & b'_1 \\ c'_1 & d'_1 \end{bmatrix} \begin{bmatrix} 1 & b'/a' \\ c'/a' & d'/a' \end{bmatrix} \right) = \Lambda(\tilde{\zeta}^{-1}) \chi_0(\tilde{\zeta}^{-1}) \chi_0(a') \left(\begin{bmatrix} a'_1 & b'_1 \\ c'_1 & d'_1 \end{bmatrix} \begin{bmatrix} 1 & b'/a' \\ c'/a' & d'/a' \end{bmatrix} \right) = W(1) \left(\begin{bmatrix} a'_1 & b'_1 \\ c'_1 & d'_1 \end{bmatrix} \right).$

Here we have used the fact that Λ is trivial on $\sigma^\infty + \mathbb{P}$, χ_0 is trivial on $1 + \mathbb{P}^{n_0}$ and the matrix

$\begin{bmatrix} 1 & b'/a' \\ c'/a' & d'/a' \end{bmatrix}$

lies in $K^{(0)}(\mathfrak{p}^{n_0})$.

Let $n_0 = \max\{1, n\}$, as above. Given a complex number s, define the function $W^#(\cdot, s) : G(F) \to \mathbb{C}$ as follows.

i) If $g \notin M(F)N(F)\eta\Pi(\mathbb{P}^{n_0})$, then $W^#(g, s) = 0$.

ii) If $g = mnk\gamma$ with $m \in M(F), n \in N(F), k \in I, \gamma \in \Gamma(\mathbb{P}^{n_0})$, then $W^#(g, s) = W^#(mn, s)$.

iii) For $\zeta \in L^\times$ and $\begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} \in M^{(2)}(F)$,

$W^# \left(\begin{bmatrix} \zeta & 1 \\ 1 & \tilde{\zeta}^{-1} \end{bmatrix} \begin{bmatrix} 1 & b'/a' \\ c'/a' & d'/a' \end{bmatrix} \eta, s \right) = |N(\zeta) \cdot \mu^{-1}|^{3(s+1/2)} \chi(\zeta) W(1) \left(\begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} \right),$

where $\mu = \bar{a}'d' - b'\bar{c}'$.

By Lemma 4.1, we see that $W^#$ is well-defined. It is an element of $I(s, \chi, \chi_0, \tau)$.

4.4. Support of $W^#$. We choose $W^#$ as above and B as in Proposition 3.8, with $B(1) = 1$. Note that $B(1) \neq 0$ by the comments in the beginning of Section 4.3.
Then the integral (4-4) becomes

\[(4-9) \quad Z(s) = \sum_{l \in \mathbb{Z}} \sum_{m \geq 0} \sum_{t} W^#(\eta h(l, m) t, s) B(h(l, m) t) V_{t}^{l, m},\]

where \(t\) runs through the double coset representatives from Proposition 3.3 and

\[V_{t}^{l, m} = \text{vol}(R(F) \setminus R(F) h(l, m) t I)\].

To compute (4-9), we need to find out for what values of \(l, m, t\) is \(\eta h(l, m) t\) in the support of \(W^#\). Write \(\eta h(l, m) = h(l, m) \eta_m\), where

\[\eta_m = \begin{bmatrix} 1 & \omega^m \alpha & 1 \\ -\omega^m \bar{\alpha} & 1 & -\omega^m \bar{\alpha} \end{bmatrix} \].

Since \(h(l, m) \in M(F)\), we need to know for which values of \(m, t\) is \(\eta_m t\) in the support of \(W^#\). This is done in the following lemma.

Lemma 4.2. Let \(t\) be any double coset representative from Proposition 3.3. Then \(\eta_m t\) lies in the support, \(MN \eta \Gamma(\mathfrak{P}^{n_0})\), of \(W^#\) if and only if \(m = 0\) and \(t = 1\).

Proof. We first consider the case \(m > 0\). Note that it is enough to show that \(\eta_m t \notin MN \eta \Gamma(\mathfrak{P})\). For any double coset representative \(t\), we have \(t^{-1} \eta_m t \equiv 1 \pmod{\mathfrak{P}}\) and hence \(t^{-1} \eta_m t \in \Gamma(\mathfrak{P})\). So it is enough to show that \(t \notin MN \eta \Gamma(\mathfrak{P})\) for any \(t\).

Suppose there are \(\hat{m} \in M, \hat{n} \in N\) such that \(A = \eta^{-1} \hat{m} \hat{n} t \in \Gamma(\mathfrak{P})\). Using \(\hat{m}, \hat{n} \in K^G\) and

\[\eta_m = \begin{bmatrix} 1 & \omega^m \alpha & 1 \\ -\omega^m \bar{\alpha} & 1 & -\omega^m \bar{\alpha} \end{bmatrix} \]

we get a contradiction for every \(t \in W\). We now consider the case \(m = 0\). First let \(t = 1\). Taking \(\hat{m} = \hat{n} = 1\), we easily see that \(\eta \in MN \eta \Gamma(\mathfrak{P}^{n_0})\), as required. Now assume that \(t \neq 1\). Suppose, there are \(\hat{m} \in M, \hat{n} \in N\) such that \(A = \eta^{-1} \hat{m} \hat{n} t \in \Gamma(\mathfrak{P})\). Again, using \(\hat{m}, \hat{n} \in K^G\) and (4-10) we get a contradiction for \(t \neq 1\). This completes the proof of the lemma. □

4.5. Integral computation. From Lemma 4.2, we see that the integral (4-9) is equal to

\[(4-11) \quad Z(s) = \sum_{l \geq 0} W^#(\eta h(l, 0), s) B(h(l, 0)) V_{l}^{1, 0} \].
Arguing as in [Furusawa 1993, §3.5], we get

\[
V_{1,0}^l = \frac{(1 - \left(\frac{L}{p}\right)q^{-1})q}{(1 + q)^2(1 + q^2)} q^{3l}.
\]

From Proposition 3.8 and (4-8), we get \(B(h(l, 0), \eta h(l, 0), s) = q^{-3(s+1/2)l} \omega \tau (\omega^{-l}) W(1) \left(\begin{bmatrix} \omega^l \\ 1 \end{bmatrix}\right)\).

We set

\[
C = \frac{(1 - \left(\frac{L}{p}\right)q^{-1})q}{(1 + q)^2(1 + q^2)}.
\]

We have

\[
Z(s) = C \sum_{l \geq 0} (-\omega)^l q^{-3(s+1/2)l} \omega \tau (\omega^{-l}) W(1) \left(\begin{bmatrix} \omega^l \\ 1 \end{bmatrix}\right).
\]

We will now substitute the value of \(W(1)\), from the table obtained in Section 4.2, into (4-12) for all possible \(GL_2\) representations \(\tau\).

\[
Z(s) = \begin{cases}
C (1 + \omega \alpha (\omega^{-1}) q^{-3s-2})^{-1} (1 + \omega \beta (\omega^{-1}) q^{-3s-2})^{-1}
& \text{if } \tau = \alpha \times \beta, \alpha, \beta \text{ unramified, } \alpha \beta^{-1} \neq |\cdot|^{\pm 1}; \\
C (1 + \omega \alpha (\omega^{-1}) q^{-3s-2})^{-1}
& \text{if } \tau = \alpha \times \beta, \alpha \text{ unramified, } \beta \text{ ramified } \alpha \beta^{-1} \neq |\cdot|^{\pm 1}; \\
C (1 + \omega \Omega' (\omega^{-1}) q^{-3s-5/2})^{-1}
& \text{if } \tau = \Omega' St_{GL_2}, \Omega' \text{ unramified}; \\
C & \text{otherwise.}
\end{cases}
\]

Let \(\tilde{\tau}\) denote the contragredient of the representation \(\tau\). We get the following theorem on the integral representation of \(L\)-functions.

Theorem 4.3. Let

\[
\pi = \Omega St_{GSp_4}
\]

be the Steinberg representation of \(GSp_4(F)\) twisted by an unramified quadratic character \(\Omega\). Let \(\tau\) be any irreducible admissible representation of \(GL_2(F)\). Let \(Z(s)\) be the integral defined in (4-4). Choose \(B\) as in Section 3 and \(W^\#\) as in Section 4.3. Then we have

\[
Z(s) = Y'(s) L(3s + \frac{1}{2}, \pi \times \tilde{\tau}),
\]

where

\[
Y'(s) = \begin{cases}
C (1 - \Omega (\omega) \Omega' (\omega^{-1}) q^{-3s-3/2})
& \text{if } \tau = \Omega' St_{GL_2}, \Omega' \text{ unramified}; \\
C & \text{otherwise.}
\end{cases}
\]
Here,

$$C = \frac{(1 - \left(\frac{L}{p}\right) q^{-1}) q}{(1 + q)^2(1 + q^2)}.$$

Proof. This follows from (4-13) and from the following definition of L-functions for the representation $\pi = \Omega \text{ St}_{GSp_4}$, with Ω unramified and quadratic, twisted by $\tilde{\tau}$:

$$L(s, \pi \times \tilde{\tau}) = \begin{cases}
\left(1 - \Omega(\sigma) \alpha(\sigma^{-1}) q^{-s-3/2}\right)^{-1} \left(1 - \Omega(\sigma) \beta(\sigma^{-1}) q^{-s-3/2}\right)^{-1} & \text{if } \tau = \alpha \times \beta, \alpha, \beta \text{ unramified, } \alpha \beta^{-1} \neq \cdot | \cdot \pm 1; \\
\left(1 - \Omega(\sigma) \alpha(\sigma^{-1}) q^{-s-3} q^{s-2}\right)^{-1} & \text{if } \tau = \alpha \times \beta, \alpha \text{ unramified, } \beta \text{ ramified } \alpha \beta^{-1} \neq \cdot | \cdot \pm 1; \\
\left(1 - \Omega(\sigma) \Omega'(\sigma^{-1}) q^{-s-1}\right)^{-1} \left(1 - \Omega(\sigma) \Omega'(\sigma^{-1}) q^{-s-2}\right)^{-1} & \text{if } \tau = \Omega' \text{ St}_{GL_2}, \Omega' \text{ unramified}; \\
1 & \text{otherwise.} \quad \Box
\end{cases}$$

5. Global theory

In the previous section, we computed the nonarchimedean integral representation of the L-function $L(s, \pi \times \tilde{\tau})$ for the Steinberg representation of GSp_4 twisted by any GL_2 representation. In [Furusawa 1993], the integral has been computed for both π and τ unramified. In [Pitale and Schmidt 2009c], the integral has been calculated for an unramified representation π twisted by any ramified GL_2 representation τ. In the same paper, the archimedean integral was computed for π_∞ a holomorphic (or limit of holomorphic) discrete series representation with scalar minimal K-type, and τ_∞ any representation of $GL_2(\mathbb{R})$. In this section, we will put together all the local computations and obtain an integral representation of a global L-function. We will start with a Siegel cuspidal newform F of weight l with respect to the Borel congruence subgroup of square-free level. We will obtain an integral representation of the L-function of F twisted by any irreducible cuspidal automorphic representation τ of $GL_2(\mathbb{A})$. When τ is obtained from a holomorphic cusp form of the same weight l as F, we obtain a special value result for the L-function, in the spirit of Deligne’s conjectures.

5.1. Siegel modular form and Bessel model. Let M be a square-free positive integer and l be any positive integer. Set

$$B(M) := \left\{ g \in Sp_4(\mathbb{Z}) : g \equiv \begin{bmatrix} * & 0 & * & * \\ * & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{bmatrix} \pmod{M} \right\}.$$

Let F be a Siegel newform of weight l with respect to $B(M)$. We refer the reader to [Saha 2009, §8] or [Schmidt 2005] for definition and details on newforms with
square-free level. The Fourier expansion of F is given by

$$F(Z) = \sum_{T>0} A(T) e^{2\pi i \text{tr}(TZ)},$$

where T runs over all semi-integral, symmetric, positive definite 2×2 matrices. We obtain a well-defined function $\Phi = \Phi_F$ on $H(\mathbb{A})$, where \mathbb{A} is the ring of adeles of \mathbb{Q}, by

$$\Phi(\gamma h_0) = \mu_2(h_0)^l \det(J(h_0, i 1_2))^{-l} F(h_0(i 1_2)),$$

where $\gamma \in H(\mathbb{Q})$, $h_0 \in H^+(\mathbb{R})$, $k_0 \in \prod_{p \mid M} H(\mathbb{Z}_p) \prod_{p \mid M} I_{p}$. Let V_F be the space generated by the right translates of Φ_F and let π_F be one of the irreducible components. Then $\pi_F = \otimes \pi_p$, where π_∞ is a holomorphic discrete series representation of $H(\mathbb{R})$ of lowest weight (l, l), for a finite prime $p \mid M$, π_p is an irreducible, unramified representation of $H(\mathbb{Q}_p)$, and for $p \mid M$, π_p is a twist $\Omega_p \text{St}_{GSp_4}$ of the Steinberg representation of $H(\mathbb{Q}_p)$ by an unramified quadratic character Ω_p.

For a positive integer $D \equiv 0, 3 \pmod{4}$, set

$$S(-D) = \begin{cases}
\begin{bmatrix} \frac{1}{4} D & 0 \\ 0 & 1 \end{bmatrix} & \text{if } D \equiv 0 \pmod{4}, \\
\begin{bmatrix} \frac{1}{4}(1+D) & \frac{1}{2} \\ \frac{1}{2} & 1 \end{bmatrix} & \text{if } D \equiv 3 \pmod{4}.
\end{cases}$$

Let $L = \mathbb{Q}(\sqrt{-D})$ and $T(\mathbb{A}) \cong \mathbb{A}^\times_L$ be the adelic points of the group defined in (3-1). Let $R(\mathbb{A}) = T(\mathbb{A})U(\mathbb{A})$ be the Bessel subgroup of $H(\mathbb{A})$. Let Λ be a character of

$$T(\mathbb{A})/T(\mathbb{Q}) \equiv \prod_{p \mid M} T(\mathbb{Z}_p) \prod_{p \mid M} T_0^p,$$

where $T(\mathbb{Z}_p) = T(\mathbb{Q}_p) \cap GL_2(\mathbb{Z}_p)$ and $T_0^p = T(\mathbb{Z}_p) \cap \Gamma_0^p$. Here

$$\Gamma_0^p = \left\{ g \in GL_2(\mathbb{Z}_p) : g \equiv \begin{bmatrix} * & 0 \\ * & * \end{bmatrix} \pmod{p\mathbb{Z}_p} \right\}.$$

Note that, under the isomorphism (3-2), T_0^p corresponds to $\mathbb{Z}_p^\times + p\mathfrak{o}_L$, where \mathfrak{o}_L is the ring of integers of the two dimensional algebra $L \otimes_{\mathbb{Q}} \mathbb{Q}_p$. Let ψ be a character of $\mathbb{Q} \setminus \mathbb{A}$ that is trivial on \mathbb{Z}_p for all primes p and satisfies $\psi(x) = e^{-2\pi i x}$ for all $x \in \mathbb{R}$. We define the global Bessel function of type (Λ, θ) associated to Φ by

$$B_\Phi(h) = \int_{Z_H(\mathbb{A}) \cap R(\mathbb{Q}) \setminus R(\mathbb{A})} (\Lambda \otimes \theta)(r)^{-1} \Phi(rh)dr,$$

where

$$\theta \left(\begin{bmatrix} 1 & X \\ 0 & 1 \end{bmatrix} \right) = \psi(\text{tr}(SX)) \quad \text{and} \quad \bar{\Phi}(h) = \Phi(h).$$
If B_{Φ} is nonzero, then B_{ϕ} is nonzero for any $\phi \in \pi_F$. We say that π_F has a global Bessel model of type (Λ, θ) if $B_{\Phi} \neq 0$. We shall make the following assumption on the representation π_F.

Assumption. π_F has a global Bessel model of type (Λ, θ) such that

A1. $-D$ is the fundamental discriminant of $\mathbb{Q}(\sqrt{-D})$.
A2. Λ is a character of (5_1).
A3. For $p | M$, if $L \otimes \mathbb{Q}_p$ is split and A_p is unramified, then

\[\Omega_p(\varpi_p) \Lambda_p((1, \varpi_p)) \neq 1. \]

Remark 5.1. In [Furusawa 1993; Pitale and Schmidt 2009b; 2009c; Saha 2009], nonvanishing of a suitable Fourier coefficient of F is assumed, while in [Pitale and Schmidt 2009a], the existence of a suitable global Bessel model for π_F is assumed. We explain the relation of the assumption above to nonvanishing of certain Fourier coefficients of F. Let $\{t_j\}$ be a set of representatives for (5_1). One can take $t_j \in \text{GL}_2(\mathbb{A}_f)$. Write

\[t_j = \gamma_j m_j \kappa_j, \]

with $\gamma_j \in \text{GL}_2(\mathbb{Q})$, $m_j \in \text{GL}_2^+(\mathbb{R})$ and $\kappa_j \in \prod_{p | M} \text{GL}_2(\mathbb{Z}_p) \prod_{p | M} \Gamma_p^0$. Set

\[S_j := \det(\gamma_j)^{-1} \gamma_j S(-D) \gamma_j. \]

Note that $\{S_j\}_j$ is a subset of the set of representatives of $\Gamma^0(M)$ equivalence classes of primitive, semi-integral positive definite 2×2 matrices of discriminant $-D$.

From [Saha 2009] or [Sugano 1985], we have, for $h_\infty \in H^+(\mathbb{R})$,

\[B_{\Phi}(h_\infty) = \mu_2(h_\infty)^l \det(J(h_\infty, I))^{-l} e^{-2\pi i \varpi(S(-D) h_\infty(I))} \sum_j \Lambda(t_j)^{-1} A(S_j), \]

and $B_{\Phi}(h_\infty) = 0$ for $h_\infty \notin H^+(\mathbb{R})$. Suppose that there is a semi-integral, symmetric, positive definite 2×2 matrix T satisfying

i) $-D = \det(2T)$ is the fundamental discriminant of $L = \mathbb{Q}(\sqrt{-D})$.
ii) T is $\Gamma^0(M)$ equivalent to one of the S_j.
iii) The Fourier coefficient $A(T) \neq 0$.

Then it is clear from (5-2) that one can choose a Λ such that parts A1 and A2 of the assumption are satisfied. If $M = 1$ (as in [Furusawa 1993; Pitale and Schmidt 2009b; 2009c]) or, every prime $p | M$ is inert in L (as in [Saha 2009]), then $\{S_j\}_j$ is the complete set of representatives of $\Gamma^0(M)$ equivalence classes and hence, condition (i) above implies condition (ii) to give the assumption from [Furusawa 1993; Pitale and Schmidt 2009b; 2009c] and [Saha 2009]. We have to include part...
A3 of the assumption to guarantee that the Iwahori spherical vector in \(\pi_p \), for \(p | M \), is a test vector for the Bessel functional.

We abbreviate \(a(\Lambda) = \sum \Lambda(t_j) A(S_j) \). For \(h \in H(\mathbb{A}) \), we have
\[
B_\Phi(h) = \overline{a(\Lambda)} \prod_p B_p(h_p),
\]
where \(B_\infty \) is as defined in [Pitale and Schmidt 2009c], for a finite prime \(p \nmid M \), \(B_p \) is the spherical vector in the \((\Lambda_p, \theta_p) \)-Bessel model for \(\pi_p \), and for \(p | M \), \(B_p \) is the vector in the \((\Lambda_p, \theta_p) \)-Bessel model for \(\pi_p \) defined by Proposition 3.8 and 3.10. For \(p < \infty \), we have normalized the \(B_p \) so that \(B_p(1) = 1 \).

5.2. Global induced representation and global integral. Let \(\tau = \bigotimes \tau_p \) be an irreducible cuspidal automorphic representation of \(\text{GL}_2(\mathbb{A}) \) with central character \(\omega_\tau \). For every prime \(p < \infty \), let \(p^{n_p} \) be the conductor of \(\tau_p \). For almost all \(p \), we have \(n_p = 0 \). Set \(N = \prod_p p^{n_p} \). Choose \(l_1 \) to be any weight occurring in \(\tau_\infty \). Let \(\chi_0 \) be a character of \(\mathbb{A}_L^\times \) such that \(\chi_0 |_{\mathbb{A}_L^\times} = \omega_\tau \) and \(\chi_0, \infty(\zeta) = \xi^{l_2} \) for any \(\zeta \in S^1 \). Here, \(l_2 \) depends on \(l_1 \) and \(l \) by the formula
\[
l_2 = \begin{cases} l_1 - 2l & \text{if } l \leq l_1, \\ -l_1 & \text{if } l \geq l_1, \end{cases}
\]
as in [Pitale and Schmidt 2009c]. The existence of such a character is guaranteed by Lemma 5.3.1 of that reference. Define another character \(\chi \) of \(\mathbb{A}_L^\times \) by
\[
\chi(\xi) = \chi_0(\xi)^{-1} \Lambda(\xi)^{-1}.
\]

Let \(I(s, \chi_0, \chi, \tau) \) be the induced representation of \(G(\mathbb{A}) \) obtained in an analogous way to the local situation in Sect. 4.1. We will now define a global section \(f_\Lambda(g, s) \). We realize the representation \(\tau \) as a subspace of \(L^2(\text{GL}_2(\mathbb{Q}) \setminus \text{GL}_2(\mathbb{A})) \) and let \(\hat{f} \) be the automorphic cusp form such that the space of \(\tau \) is generated by the right translates of \(\hat{f} \). The function \(\hat{f} \) corresponds to a cuspidal Hecke newform on the complex upper half plane. Then, \(\hat{f} \) is factorizable. Write \(\hat{f} = \bigotimes \hat{f}_p \) such that \(\hat{f}_\infty \) is the function of weight \(l_1 \) in \(\tau_\infty \). For \(p < \infty \), \(\hat{f}_p \) is the unique newform in \(\tau_p \) with \(\hat{f}_p(1) = 1 \). Using \(\chi_0 \), extend \(\hat{f} \) to a function of \(\text{GU}(1, 1; L)(\mathbb{A}) \).

For a finite prime \(p \), set
\[
K_p^G := \begin{cases} G(\mathbb{Z}_p) & \text{if } p \nmid MN; \\ \Pi^\Gamma((p \sigma_{L_p})^{n_p,0}) & \text{if } p | M; \\ H(\mathbb{Z}_p) \Gamma((p \sigma_{L_p})^{n_p}) & \text{if } p | N, p \nmid M. \end{cases}
\]

Here, in the second case, \(n_{p,0} = \max(1, n_p) \). Set \(K^G(M, N) = \prod_{p < \infty} K_p^G \) and let \(K_\infty \) be the maximal compact subgroup of \(G(\mathbb{R}) \). Let \(\eta \) be the element of \(G(\mathbb{Q}) \) defined in (4-4). Let \(\eta_{M, N} \) be the element of \(G(\mathbb{A}) \) such that the \(p \)-component is
given by η for $p | MN$ and by 1 for $p \not| MN$. For $s \in \mathbb{C}$, define $f_{\Lambda} (\cdot, s)$ on $G(\mathbb{A})$ by

i) $f_{\Lambda} (g, s) = 0$ if $g \not\in M(\mathbb{A}) N(\mathbb{A}) \eta_{M,N} K_{\infty} K^G(M, N)$.

ii) If $m = m_1 m_2$, $m_i \in M^{(i)}(\mathbb{A})$, $n \in N(\mathbb{A})$, $k = k_0 k_{\infty}$, $k_0 \in K^G(M, N)$, $k_{\infty} \in K_{\infty}$, then

$$f_{\Lambda} (m n n \eta_{M,N} k, s) = \delta_{1/2}^{1/2+s}(m) \chi(m_1) \hat{f}(m_2) f(k_{\infty}).$$

(5-3)

Recall that $\delta_p(m_1 m_2) = |N_{L/Q}(m_1) \mu_1(m_2)|^{-1}.$

Here, $M^{(1)}(\mathbb{A})$, $M^{(2)}(\mathbb{A})$, $N(\mathbb{A})$ are the adelic points of the algebraic groups defined by (4-1)–(4-3) and f is the function on K_{∞} defined in [Pitale and Schmidt 2009c].

As in [Pitale and Schmidt 2009c], it can be checked that f_{Λ} is well-defined. For $\Re(s)$ large enough we can form the Eisenstein series

$$E(g, s; f_{\Lambda}) := \sum_{\gamma \in P(\mathbb{Q}) \backslash G(\mathbb{Q})} f_{\Lambda}(\gamma g, s).$$

In fact, $E(g, s; f_{\Lambda})$ has a meromorphic continuation to the entire plane. In [Furusawa 1993], Furusawa studied integrals of the form

$$Z(s, f_{\Lambda}, \varphi) = \int_{H(\mathbb{Q}) Z_H(\mathbb{A}) \backslash H(\mathbb{A})} E(h, s; f_{\Lambda}) \varphi(h) dh,$$

where $\varphi \in V_{\pi}$. Theorem 2.4 of [Furusawa 1993], the “basic identity”, states that

(5-5) $Z(s, f_{\Lambda}, \varphi) = \int_{R(\mathbb{A}) \backslash H(\mathbb{A})} W_{f_{\Lambda}}(\eta h, s) B_{\varphi}(h) dh,$

where B_{φ} is the Bessel function corresponding to φ and $W_{f_{\Lambda}}$ is the function defined by

$$W_{f_{\Lambda}}(g) = \int_{Q \backslash A} f_{\Lambda} \left(\begin{bmatrix} 1 & x \\ 1 & 1 \end{bmatrix} g \right) \psi(cx) dx, \quad g \in G(\mathbb{A}).$$

The function $W_{f_{\Lambda}}$ is a pure tensor and we can write

$$W_{f_{\Lambda}}(g, s) = \prod_p W_{p}^\#(g_p, s).$$

Then we see that $W_{p}^\#$ is as defined in [Pitale and Schmidt 2009c]. For a finite prime $p \not| M$, the $W_{p}^\#$ is the function defined in Section 4.5 of that reference. For $p | M$, the $W_{p}^\#$ is as in Section 4.3. It follows from (5-5) that

$$Z(s, f_{\Lambda}, \Phi) = \prod_{p \leq \infty} Z_p(s, W_{p}^\#, B_p),$$
where
\[Z_p(s, W^\#_p, B_p) = \int_{\mathbb{R}(\mathbb{Q}_p)\backslash \mathbb{H}(\mathbb{Q}_p)} W^\#_p(\eta h, s) B_p(h) \, dh. \]

When \(p \nmid MN, p < \infty \), the integral \(Z_p \) is evaluated in [Furusawa 1993]. For \(p = \infty \) or \(p \mid N, p \nmid M \), the integral \(Z_p \) is calculated in [Pitale and Schmidt 2009c, Theorems 3.5.1 and 4.4.1]. For \(p \mid M \), the integral \(Z_p \) is calculated in Theorem 4.3. Putting all of this together we get the following global theorem.

Theorem 5.2. Let \(F \) be a Siegel cuspidal newform of weight \(l \) with respect to \(B(M) \), where \(l \) is any positive integer and \(M \) is square-free, satisfying the assumption stated in Section 5.1. Let \(\Phi \) be the adelic function corresponding to \(F \), and let \(\pi_F \) be an irreducible component of the cuspidal automorphic representation generated by \(\Phi \). Let \(\tau \) be any irreducible cuspidal automorphic representation of \(\text{GL}_2(\mathbb{A}) \). Let the global characters \(\chi, \chi_0 \) and \(\Delta \), as well as the global section \(f_\Delta \in I(s, \chi, \chi_0, \tau) \), be chosen as above. Then the global integral (5-4) is given by

\[Z(s, f_\Delta, \Phi) = \left(\prod_{p \leq \infty} Y_p(s) \right) \frac{L(3s + 1/2, \pi \times \tilde{\tau})}{L(6s + 1, \omega^{-1}_\tau) L(3s + 1, \tilde{\tau} \times \mathcal{A}\mathcal{F}(\Delta))} \]

with

\[Y_\infty(s) = a(\Delta) \frac{a^+}{2} \pi D^{-3s-l/2} (4\pi)^{-3s+3/2-l} \frac{\Gamma(3s + l - 1 + (ir)/2) \Gamma(3s + l - 1 - (ir)/2)}{\Gamma(3s + l - l_1/2 - 1/2)}. \]

Here, \(\mathcal{A}\mathcal{F}(\Delta) \) is the automorphic representation of \(\text{GL}_2(\mathbb{A}) \) obtained from \(\Delta \) via automorphic induction. The factor \(Y_p(s) \) is one for \(p \nmid MN \). For \(p \mid M, p \nmid N \), the factor \(Y_p(s) \) is given in [Pitale and Schmidt 2009c, Theorem 3.5.1]. For \(p \mid M \), we have \(Y_p(s) = L_p(6s + 1, \omega^{-1}_\tau) L(3s + 1, \tilde{\tau}_p \times \mathcal{A}\mathcal{F}(\Delta_p)) Y'_p(s) \), where \(Y'_p(s) \) is given in Theorem 4.3. The number \(r \) and \(a^+ \) are as in the archimedean calculation in [Pitale and Schmidt 2009c], and the constant \(a(\Delta) \) is defined in Section 5.1.

5.3. Special values of L-functions. In this section, we will use Theorem 5.2 to obtain a special value result for the \(L \)-function in the case that \(\tau \) corresponds to a holomorphic cusp form of the same weight as \(F \). Let \(\Psi \in S_l(N, \chi') \), the space of holomorphic cusp forms on the complex upper half plane \(\mathbb{H}_1 \) of weight \(l \) with respect to \(\Gamma_0(N) \) and nebentypus \(\chi' \). Here \(N = \prod_p p^{n_p} \) is any positive integer and \(\chi' \) is a Dirichlet character modulo \(N \). We have as a Fourier expansion

\[\Psi(z) = \sum_{n=1}^{\infty} b_n e^{2\pi inz}. \]
We will assume that Ψ is primitive, which means that Ψ is a newform, a Hecke
eigenform and is normalized so that $b_1 = 1$. Let $\omega = \bigotimes \omega_p$ be the character of
$\mathbb{A}^\times / \mathbb{Q}^\times$ corresponding to χ'. Let $K^{(0)}(N) := \prod_{p \mid N} K^{(0)}(p^n) \prod_{p \nmid N} \mathrm{GL}_2(\mathbb{Z}_p)$ with
the local congruence subgroups

$$K^{(0)}(p^n) = \mathrm{GL}_2(\mathbb{Z}_p) \cap \left[1 + p^n \mathbb{Z}_p \begin{bmatrix} \mathbb{Z}_p & \mathbb{Z}_p \\ p^n \mathbb{Z}_p & \mathbb{Z}_p \end{bmatrix} \right]$$

as in (4-5). Let $K_0(N) := \prod_{p \mid N} K_0(p^n) \prod_{p \nmid N} \mathrm{GL}_2(\mathbb{Z}_p)$, where

$$K_0(p^n) = \mathrm{GL}_2(\mathbb{Z}_p) \cap \left[\mathbb{Z}_p \begin{bmatrix} \mathbb{Z}_p & \mathbb{Z}_p \\ p^n \mathbb{Z}_p & \mathbb{Z}_p \end{bmatrix} \right].$$

Evidently, $K^{(0)}(N) \subset K_0(N)$. Let λ be the character of $K_0(N)$ given by

$$\lambda \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) := \prod_{p \mid N} \omega_p(a_p).$$

With these notations, we now define the adelic function f_Ψ by

$$f_\Psi(\gamma_0 m k) = \lambda(k) \frac{\det(m)^{1/2}}{(\gamma i + \delta)^l} \Psi \left(\frac{\alpha i + \beta}{\gamma i + \delta} \right),$$

where $\gamma_0 \in \mathrm{GL}_2(\mathbb{Q})$,

$$m = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} \in \mathrm{GL}_2^+(\mathbb{R})$$

and $k \in K_0(N)$. Define a character χ_0, as in the previous section, with $l_2 = -l$.
Using χ_0, extend f_Ψ to a function on $\mathrm{GU}(1, 1; L)(\mathbb{A})$. We can take $\hat{f} = f_\Psi$ in
(5-3) and obtain the section f_λ. Now, [Pitale and Schmidt 2009c, Lemma 5.4.2] gives us that, for $g \in G^+(\mathbb{R})$, the function

$$\mu_2(g)^{-l} \det(J(g, i l_2))^l E(g, s; f_\lambda)$$

only depends on $Z = g \langle i l_2 \rangle$. We define the function \mathcal{E} on

$$\mathbb{H}_2 := \{ Z \in M_2(\mathbb{C}) : i (l Z - Z) \text{ is positive definite} \}$$

by the formula

$$\mathcal{E}(Z, s) = \mu_2(g)^{-l} \det(J(g, i l_2))^l E \left(g, \frac{s}{3} + \frac{l}{6} - \frac{1}{2}; f_\lambda \right),$$

where $g \in G^+(\mathbb{R})$ is such that $g \langle i l_2 \rangle = Z$. The series that defines $\mathcal{E}(Z, s)$ is
absolutely convergent for $\Re(s) > 3 - l/2$ (see [Klingen 1967]). We assume that
$l > 6$. Now, we can set $s = 0$ and obtain a holomorphic Eisenstein series $\mathcal{E}(Z, 0)$
on \mathbb{H}_2. Let

$$\Gamma^G(M, N) := G(\mathbb{Q}) \cap G^+(\mathbb{R}) K^G(M, N).$$
We have
\[\Gamma^G(M, N) \cap H(\mathbb{Q}) = B(M). \]

Then \(\mathcal{E}(Z, 0) \) is a modular form of weight \(l \) with respect to \(\Gamma^G(M, N) \). Its restriction to \(\mathfrak{h}_2 \), the Siegel upper half space, is a modular form of weight \(l \) with respect to \(B(M) \). By [Harris 1984], we know that the Fourier coefficients of \(\mathcal{E}(Z, 0) \) are algebraic.

Set
\[V(M) := [\text{Sp}_4(\mathbb{Z}) : B(M)]^{-1} \]
and define, for any two Siegel modular forms \(F_1, F_2 \) of weight \(l \) with respect to \(B(M) \), the Petersson inner product by
\[
\langle F_1, F_2 \rangle = \frac{1}{2} V(M) \int_{B(M) \backslash \mathfrak{h}_2} F(Z) \overline{F_2(Z)} (\det(Y))^{l-3} dX dY.
\]

Arguing as in [Pitale and Schmidt 2009c, Lemma 5.6.2] or [Saha 2009, Proposition 9.0.5], we get
\[
Z\left(\frac{1}{6} l - \frac{1}{2}, f_\mathfrak{A}, \tilde{\Phi}\right) = \langle \mathcal{E}(Z, 0), F \rangle.
\]

Let
\[\Gamma^{(2)}(M) := \{ g \in \text{Sp}_4(\mathbb{Z}) : g \equiv 1 \pmod{M} \} \]
be the principal congruence subgroup of \(\text{Sp}_4(\mathbb{Z}) \). We denote the space of all Siegel cusp forms of weight \(l \) with respect to \(\Gamma^{(2)}(M) \) by \(S_l(\Gamma^{(2)}(M)) \). For a Hecke eigenform \(F \in S_l(\Gamma^{(2)}(M)) \), let \(\mathbb{Q}(F) \) be the subfield of \(\mathbb{C} \) generated by all the Hecke eigenvalues of \(F \). From [Garrett 1992, p. 460], we see that \(\mathbb{Q}(F) \) is a totally real number field. Let \(S_l(\Gamma^{(2)}(M), \mathbb{Q}(F)) \) be the subspace of \(S_l(\Gamma^{(2)}(M)) \) consisting of cusp forms whose Fourier coefficients lie in \(\mathbb{Q}(F) \). Again by [Garrett 1992, p. 460], \(S_l(\Gamma^{(2)}(M)) \) has an orthogonal basis \(\{ F_i \} \) of Hecke eigenforms \(F_i \in S_l(\Gamma^{(2)}(M), \mathbb{Q}(F_i)) \). In addition, if \(F \) is a Hecke eigenform such that \(F \in S_l(\Gamma^{(2)}(M), \mathbb{Q}(F)) \), then one can take \(F_1 = F \) in the above basis. Hence, we assume that the Siegel newform \(F \) of weight \(l \) with respect to \(B(M) \) considered in the previous section satisfies \(F \in S_l(\Gamma^{(2)}(M), \mathbb{Q}(F)) \). Then, arguing as in [Pitale and Schmidt 2009b, Lemma 5.4.3], we have
\[
\left\langle \mathcal{E}(Z, 0), F \right\rangle \in \overline{\mathbb{Q}},
\]
where \(\overline{\mathbb{Q}} \) is the algebraic closure of \(\mathbb{Q} \) in \(\mathbb{C} \). Let
\[
\langle \Psi, \Psi \rangle_1 := (\text{SL}_2(\mathbb{Z}) : \Gamma_1(N))^{-1} \int_{\Gamma_1(N) \backslash \mathfrak{h}_1} |\Psi(z)|^2 y^{l-2} dx dy,
\]
where
\[\Gamma_1(N) := \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma_0(N) : a, d \equiv 1 \pmod{N} \right\}. \]

We have the following generalization of [Furusawa 1993, Theorem 4.8.3].

Theorem 5.3. Let \(l, M \) be positive integers such that \(l > 6 \) and \(M \) is square-free. Let \(F \) be a cuspidal Siegel newform of weight \(l \) with respect to \(B(M) \) such that \(F \in S_l(\Gamma(2)(M), \mathbb{Q}(F)) \), satisfying the assumption from Sect. 5.1. Let \(\Psi \in S_l(N, \chi') \) be a primitive form, with \(N = \prod p^{n_p} \), any positive integer, and \(\chi' \), any Dirichlet character modulo \(N \). Let \(\pi_F \) and \(\tau_\Psi \) be the irreducible cuspidal automorphic representations of \(\text{GSp}_4(\mathbb{A}) \) and \(\text{GL}_2(\mathbb{A}) \) corresponding to \(F \) and \(\Psi \). Then

\[L\left(\frac{l}{2} - 1, \pi_F \times \bar{\tau}_\Psi \right) \in \overline{\mathbb{Q}}. \]

Proof. Arguing as in the proof of [Pitale and Schmidt 2009c, Theorem 5.7.1], together with (5-8) and (5-9), we get the theorem. \(\square \)

Special value results like the one above have been obtained in [Böcherer and Heim 2006; Furusawa 1993; Pitale and Schmidt 2009b; 2009c; Saha 2009].

Acknowledgments

We thank Ralf Schmidt for all his help, and in particular for explaining how to obtain a Bessel model from a Whittaker model in the split case. We also thank Abhishek Saha for several fruitful discussions.

References

Received September 30, 2009.

AMEYA PITALE
AMERICAN INSTITUTE OF MATHEMATICS
360 PORTAGE AVENUE
PALO ALTO, CA 94306-2244
UNITED STATES
pitale@aimath.org
Realizing profinite reduced special groups
VINCENT ASTIER and HUGO MARIANO

On fibered commensurability
DANNY CALEGARI, HONGBIN SUN and SHICHEG WANG

On an overdetermined elliptic problem
LAURENT HAUSWIRTH, FRÉDÉRIC HÉLEIN and FRANK PACARD

Minimal sets of a recurrent discrete flow
HATTAB HAWETE

Trace-positive polynomials
IGOR KLEP

Remarks on the product of harmonic forms
LIVIU ORNEA and MIHAELA PILCA

Steinberg representation of GSp(4): Bessel models and integral representation of L-functions
AMEYA PITALE

An integral expression of the first nontrivial one-cocycle of the space of long knots in \mathbb{R}^3
KEIICHI SAKAI

Burghelea–Haller analytic torsion for twisted de Rham complexes
GUANGXIANG SU

$K(n)$-localization of the $K(n+1)$-local E_{n+1}-Adams spectral sequences
TAKESHI TORII

Thompson’s group is distorted in the Thompson–Stein groups
CLAIRE WLADIS

Parabolic meromorphic functions
ZHENG JIAN-HUA