(0) Chain Rule!! (a) Let \(z = f(u) \), where \(u = u(x, y) \). What is \(\frac{\partial z}{\partial x} \)?

(b) Let \(z = f(x, u) \), where \(u = u(x, y) \). What is \(\frac{\partial z}{\partial x} \)?

(1) Finding limits. For example, #12, #16 of §14.2.

(2) (Implicit differentiation) The relation \(x^2 + y^2 - z^2 = 2x(y + z) \) defines \(z \) as a function of \(x \) and \(y \) implicitly. Find \(\frac{\partial z}{\partial y} \).

(3) Find the equation of the tangent plane and the normal line to the surface \(z = \sin(x + y) \) at \((1, -1, 0)\).

(4) Directional derivative. You must first change the direction vector to a unit vector. Remember the formula \(D_u f(a, b) = u \cdot \nabla f(a, b) \).

(5) (Approximation by differential) Use differential to estimate the amount of metal in a closed cylindrical can that is 10 cm high and 4 cm in diameter if the metal in the top and bottom is 0.1 cm thick and the metal in the sides is 0.05 cm thick.

(6) Suppose \(S \) is a surface with equation \(F(x, y, z) = k \), that is, it is a level surface of a function \(F \) of three variables, and let \(P(x_0, y_0, z_0) \) be a point on \(S \). Let \(C \) be any curve that lies on the surface \(S \) and passes through the point \(P \). Recall that the curve \(C \) is described by a continuous vector function \(r(t) = (x(t), y(t), z(t)) \). Let \(t_0 \) be the parameter value corresponding to \(P \); that is, \(r(t_0) = (x_0, y_0, z_0) \). Prove that the gradient \(\nabla F(x_0, y_0, z_0) \) is perpendicular to the tangent vector \(r'(t_0) \) at the point \(P \).

(7) If \(z = f(x, y) \), where \(x = s + t \) and \(y = s - t \), show that
\[
\left(\frac{\partial z}{\partial x} \right)^2 - \left(\frac{\partial z}{\partial y} \right)^2 = \frac{\partial z}{\partial s} \frac{\partial z}{\partial t}
\]

(8) Find all critical points of the function \(f(x, y) = 4xy - x^4 - y^4 - 1 \), and classify them.

(9) Setting up simultaneous equations from Lagrange multiplier method with two constraints.

(10) Find the extreme values of \(f(x, y) = e^{-xy} \) on the region \(x^2 + 4y^2 \leq 1 \).
(To analyze the boundary, use the Lagrange multiplier method).
Hints:

0. (a) \(\frac{\partial z}{\partial x} = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x} = f'(u) \cdot \frac{\partial u}{\partial x} \) (b) \(\frac{\partial z}{\partial x} = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x} \)

1. #12: Limit does not exist, #16: Limit is 0.

2. \(\frac{\partial z}{\partial y} = \frac{y-x}{x+z} \)

3. Change the equation to \(f(x, y, z) = \sin(x + y) - z = 0 \). Then \(\nabla f(1, -1, 0) = \langle 1, 1, -1 \rangle \). Thus, \((x - 1) + (y + 1) - (z - 0) = 0 \) and \(\frac{x-1}{1} = \frac{y+1}{1} = \frac{z-0}{-1} \).

• Equation of a plane with direction \(\langle a, b, c \rangle \) passing through a point \((x_0, y_0, z_0) \) is \(a(x - x_0) + b(y - y_0) + c(z - z_0) = 0 \).

• Equation of a line with normal direction \(n = \langle a, b, c \rangle \) passing through a point \((x_0, y_0, z_0) \) is \(\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c} \).

5. Let \(V, r, h \) be the volume, radius, height. Then \(V(r, h) = \pi r^2 h \). We want to calculate \(\Delta V = V(2.05, 10.20) - V(2, 10) \) using linear approximation.

\[\Delta V \approx dV = 2\pi rh \, dr + \pi r^2 \, dh. \]

Since \(r = 2, h = 10, dr = 0.05 \) and \(dh = 0.20 \) (top and bottom), we get \(dV = 2.80\pi \).

6. (Look at the subsection in pp.964 up to equality 18). Since \(C \) lies on \(S \), any point \((x(t), y(t), z(t)) \) must satisfy the equation of \(S \), that is, \(F(x(t), y(t), z(t)) = k \).

Now take \(\frac{d}{dt} \) of both sides. By the Chain Rule (for the left side), we see \(\frac{\partial F}{\partial x} \frac{dx}{dt} + \frac{\partial F}{\partial y} \frac{dy}{dt} + \frac{\partial F}{\partial z} \frac{dz}{dt} = 0 \), which is, \(\nabla F(x_0, y_0, z_0) \cdot \mathbf{r}'(t_0) = 0 \).

Therefore, \(\nabla F(x_0, y_0, z_0) \) is perpendicular to \(\mathbf{r}'(t_0) \).

7. Calculate \(\frac{\partial z}{\partial s} \) and \(\frac{\partial z}{\partial t} \) (using chain rule), and multiply them.

\[\frac{\partial z}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \]

\[\frac{\partial z}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} = \frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} \]

Therefore,

\[\frac{\partial z}{\partial s} \cdot \frac{\partial z}{\partial t} = \left(\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \right) \left(\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} \right) = \left(\frac{\partial f}{\partial x} \right)^2 - \left(\frac{\partial f}{\partial y} \right)^2 = \left(\frac{\partial z}{\partial x} \right)^2 - \left(\frac{\partial z}{\partial y} \right)^2. \]

8. \((0, 0) \) – saddle point, \((1, 1) \) – local maximum.

10. (a) Find all local extreme values: Get only one critical point \((0, 0) \), and \(f(0, 0) = 1 \).

(b) For the boundary \(x^2 + 4y^2 = 1 \), we use the Lagrange multiplier method.

\[f(\pm \frac{1}{\sqrt{2}}, \pm \frac{1}{2\sqrt{2}}) = e^{1/4} \approx 1.284 \text{ (max)}, \quad f(\pm \frac{1}{\sqrt{2}}, \pm \frac{1}{2\sqrt{2}}) = e^{-1/4} \approx 0.779 \text{ (min)}. \]