Resistance analysis of infinite networks

Erin P. J. Pearse
erin-pearse@uiowa.edu

Joint work with Palle E. T. Jorgensen

VIGRE Postdoctoral Fellow
Department of Mathematics
University of Iowa

University of Illinois, Urbana-Champaign

April 6, 2009
Definition (Electrical resistance network \((G, c)\))

A network \((G, c)\) is a simple, connected graph \(G = \{G^0, G^1\}\) with vertices \(G^0\) and edges \(G^1\).

The edges \(G^1\) are determined by a weight function called conductance:

\[x \sim y \text{ iff } 0 < c_{xy} < \infty. \]
Definition (Electrical resistance network \((G, c)\))

A network \((G, c)\) is a simple, connected graph \(G = \{G^0, G^1\}\) with vertices \(G^0\) and edges \(G^1\).

The edges \(G^1\) are determined by a weight function called conductance:

\[
x \sim y \text{ iff } 0 < c_{xy} < \infty.
\]

The conductance \(c : G^0 \times G^0 \rightarrow [0, \infty)\) satisfies

\[
c(x) := \sum_{y \sim x} c_{xy} < \infty, \text{ for all } x \in G^0, \text{ and}
\]

\[
c_{xy} = c_{yx} \text{ for all } x, y \in G^0.
\]

Conductance is the reciprocal of the resistance.

What is the natural way to understand \((G, c)\) as a metric space?
Examples of electrical resistance networks

Integer lattice with constant conductances: \((\mathbb{Z}^d, 1)\).

(Homogeneous) trees or other Cayley graphs, with constant conductances or with
\[
c_{xy} = \lambda |x| \wedge |y|, \quad \text{for some } 0 < \lambda < 1.
\]

Relation to fractals: analysis on PCF fractals is developed as a renormalized limiting case of ERNs in [Kig], [Str], etc.
Definition ((Dirichlet) energy of a function $u : G^0 \to \mathbb{R}$)

$\mathcal{E}(u) := \frac{1}{2} \sum_{x, y \in G^0} c_{xy} (u(x) - u(y))^2$, \quad $\text{dom } \mathcal{E} = \{ u : \mathcal{E}(u) < \infty \}$.

$c_{xy} = 0$ unless $x \sim y$; only pairs for which $x \sim y$.

"$\frac{1}{2}$" indicates each edge is counted only once.

For $f : \mathbb{R} \to \mathbb{R}$, the continuous analogue is $\mathcal{E}(f) := \int |f'|^2 \, dx$.

Note: $\ker \mathcal{E} = \{ \text{constant functions} \}$.
Definition ((Dirichlet) energy of a function $u : G^0 \to \mathbb{R}$)

$\mathcal{E}(u) := \frac{1}{2} \sum_{x,y \in G^0} c_{xy} (u(x) - u(y))^2$, $\text{dom } \mathcal{E} = \{u : \mathcal{E}(u) < \infty\}$.

$c_{xy} = 0$ unless $x \sim y$; only pairs for which $x \sim y$.

"$\frac{1}{2}$" indicates each edge is counted only once.

Definition (Energy form \mathcal{E} on functions $u, v \in \text{dom } \mathcal{E}$)

$\mathcal{E}(u, v) := \frac{1}{2} \sum_{x,y \in G^0} c_{xy} (u(x) - u(y))(v(x) - v(y))$

(Polarization) $\mathcal{E}(u, v) = \frac{1}{4}[\mathcal{E}(u + v) - \mathcal{E}(u - v)]$.

(Markov property) $\mathcal{E}([u]) \leq \mathcal{E}(u)$, where $[u]$ is any contraction of u.
Definition ((Network) Laplacian \(\Delta \))
A linear difference operator; weighted average of neighbouring values.

\[
(\Delta v)(x) := \sum_{y \sim x} c_{xy} (v(x) - v(y)).
\]

If the operator \(c \) is multiplication by \(c(x) := \sum_{y \sim x} c_{xy} \), then

\[
\Delta = c - T,
\]

where \(T \) is the *transfer operator* (weighted adjacency matrix)

\[
(Tv)(x) := \sum_{y \sim x} c_{xy} v(y).
\]
Definition (Effective resistance)

The **effective resistance** $R(x, y)$ is the voltage drop between x and y when one unit of current is passed from x to y.

Series addition of resistors: $R = R_1 + R_2$.

Parallel addition of resistors: $R = \left(\frac{1}{R_1^{-1} + R_2^{-1}}\right)^{-1}$.
Definition (Effective resistance)

The effective resistance $R(x, y)$ is the voltage drop between x and y when one unit of current is passed from x to y.

Let I be a flow from x to y:

$$\text{div } I = A(\delta_x - \delta_y), \text{ for some } A > 0.$$

If I is induced by v, then $(v(x) - v(y))/A$ is independent of v.

$$R(x, y) = (v(x) - v(y))/A.$$

Recall Ohm’s law: $V = IR$, or $R = \frac{V}{I}$.
Resistance metric sees the topology of the graph

Theorem: Effective resistance $R(x, y)$ is a metric.
For shortest-path metric, $\text{dist}(a, b) = 4 = \text{dist}(x, y)$.

$\text{diff}_{xy} \equiv 1$

Diffusion through the network from x to y is much faster than from a to b. To see this, attach the electrodes!

Theorem: Effective resistance \(R(x, y) \) is a metric.

For shortest-path metric, \(\text{dist}(a, b) = 4 = \text{dist}(x, y) \).

Points are closer when there are more paths between them:

\[
R(a, b) = 2 > 1 \frac{1}{2} = R(x, y).
\]
Definition (Effective resistance)

The effective resistance \(R(x, y) \) is the voltage drop between \(x \) and \(y \) when one unit of current is passed from \(x \) to \(y \).

\[
R(x, y) = \min \{ v(x) - v(y) : \Delta v = \delta_x - \delta_y \}
= \min \{ \mathcal{E}(v) : \Delta v = \delta_x - \delta_y \}
= \min \{ D(I) : \text{div} I = \delta_x - \delta_y \}
= (\min \{ \mathcal{E}(u) : u(x) = 0, u(y) = 1 \})^{-1}
= \min \{ \kappa \geq 0 : |v(x) - v(y)|^2 \leq \kappa \mathcal{E}(v) \}
= \max \{|v(x) - v(y)|^2 : \mathcal{E}(v) \leq 1 \}
\]

The dissipation of a current is \(D(I) := \sum_{e \in G^1} c_{xy}^{-1} I(e)^2 \).

The divergence of a current \(I \) at \(x \in G^0 \) is \(\text{div}(I)(x) := \sum_{y \sim x} I(x, y) \).
\(R(x, y) \) is closely related to \(\Delta \) and the random walk

Let \(X_n \) be a RW started at \(x \), i.e., \(X_0 = x \).

Then the probability of reaching \(b \) before \(a \) is

\[
 u(x) = \frac{v(x)}{R(a, b)} = \mathbb{P}[\tau_b < \tau_a].
\]

Here, \(u, v \) are the extremizers from

\[
 R(x, y) = 1 / \min\{\mathcal{E}(u) : u(x) = 0, u(y) = 1\}
\]

\[
 = \min\{v(y) - v(x) : \Delta v = \delta_x - \delta_y\}
\]

\[
 = \min\{\mathcal{E}(v) : \Delta v = \delta_x - \delta_y\}
\]

\[
 = \min\{\kappa \geq 0 : |v(x) - v(y)|^2 \leq \kappa \mathcal{E}(v)\}
\]

\[
 = \max\{|v(x) - v(y)|^2 : \mathcal{E}(v) \leq 1\}
\]

Again, the RW has \(p(x, y) = \frac{c_{xy}}{c(x)} \), where \(c(x) := \sum_{y \sim x} c_{xy} \).
Extending resistance metric to infinite networks

For a finite subset $H \subseteq G^0$ containing a, b, define $R_H(a, b)$ just as before, using any of the six formulas, except now extremizing over $u, v : H \to \mathbb{R}$.

Let $\{G_k\}_{k=1}^{\infty}$ be an exhaustion of G:

$G_k \subseteq G_{k+1}$, $G = \bigcup G_k$, each G_k is finite and connected.

Then define $R(x, y) := \lim_{k \to \infty} R_{G_k}(x, y)$.
Extending resistance metric to infinite networks

For a finite subset $H \subseteq G^0$ containing a, b, define $R_H(a, b)$ just as before, using any of the six formulas, except now extremizing over $u, v : H \rightarrow \mathbb{R}$.

Let $\{G_k\}_{k=1}^\infty$ be an exhaustion of G:

$G_k \subseteq G_{k+1}$, $G = \bigcup G_k$, each G_k is finite and connected.

Then define $R(x, y) := \lim_{k \rightarrow \infty} R_{G_k}(x, y)$.

PROBLEM: Some of the six formulas still give the right answer, but others don’t. Example:

$$\min \{ \mathcal{E}(v) : \Delta v = \delta_x - \delta_y \} < \lim_{k \rightarrow \infty} \min \{ \mathcal{E}(v_k) : \Delta v_k = \delta_x - \delta_y \text{ on } G_k \}$$
Extending resistance metric to infinite networks

For a finite subset $H \subseteq G^0$ containing a, b, define $R_H(a, b)$ just as before, using any of the six formulas, except now extremizing over $u, v : H \rightarrow \mathbb{R}$.

Let $\{G_k\}_{k=1}^\infty$ be an exhaustion of G:

$G_k \subseteq G_{k+1}$, $G = \bigcup G_k$, each G_k is finite and connected.

Then define $R^F(x, y) := \lim_{k \to \infty} R_{G_k}(x, y)$. F is for free.
Extending resistance metric to infinite networks

For a finite subset $H \subseteq G^0$ containing a, b, define $R_H(a, b)$ just as before, using any of the six formulas, except now extremizing over $u, v : H \to \mathbb{R}$.

Let $\{G_k\}_{k=1}^\infty$ be an exhaustion of G:

$G_k \subseteq G_{k+1}$, $G = \bigcup G_k$, each G_k is finite and connected.

Then define $R^F(x, y) := \lim_{k \to \infty} R_{G_k}(x, y)$. F is for free.

For a finite subset $H \subseteq G^0$, define H^W to be the network obtained by identifying ("wiring together") all vertices in $G \setminus H$ to a new vertex called ∞ with $c_{x\infty} := \sum_{y \sim x, y \notin H} c_{xy}$.

Then define $R^W(x, y) := \lim_{k \to \infty} R_{G_k^W}(x, y)$. W is for wired.
Resistance analysis of infinite networks

The Hilbert space formalism

Resistance metric on infinite networks

For the exhaustion \(\{G_k\}_{k=1}^{\infty} \):

\[G_k \subseteq G_{k+1}, \ G = \bigcup G_k, \] each \(G_k \) is finite and connected.
Form G_k^W by identifying all vertices of G_k^C to some new vertex ∞.
This is electrically equivalent to requiring that all neighbours of \(\partial G_k \) have the same potential.

(Hence no current flows through \(G_k^C \).)
Theorem: R^F, R^W are metrics on (G, c) and $R^F(x, y) \geq R^W(x, y)$.

Strict inequality can only happen when $\text{dom} \mathcal{E}$ contains nonconstant harmonic functions.

Lemma: Let $v, h \in \text{dom} \mathcal{E}$. If v is a solution of $\Delta v = \delta_x - \delta_y$ and h is nonconstant and harmonic on G, then $\mathcal{E}(v) \neq \mathcal{E}(v + h)$.
Extending resistance metric to infinite networks

Theorem: \(R^F, R^W \) are metrics on \((G, c)\) and \(R^F(x, y) \geq R^W(x, y) \).

Strict inequality can only happen when \(\text{dom} \mathcal{E} \) contains nonconstant harmonic functions.

Lemma: Let \(v, h \in \text{dom} \mathcal{E} \). If \(v \) is a solution of \(\Delta v = \delta_x - \delta_y \) and \(h \) is nonconstant and harmonic on \(G \), then \(\mathcal{E}(v) \neq \mathcal{E}(v + h) \).

Historically, this is the problem of nonuniqueness of currents.

Given some initial data
\[
\text{div} \ I = \sum_{x \in X} \xi_x \delta_x,
\]
how can you tell when there is a unique current \(I \) with this divergence?
The energy space $\mathcal{H}_\mathcal{E}$

$\text{dom } \mathcal{E} / \mathbb{R}1$ is a Hilbert space

$$\mathcal{H}_\mathcal{E} = \text{dom } \mathcal{E} / \mathbb{R}1, \quad \langle u, v \rangle_\mathcal{E} := \mathcal{E}(u, v).$$

Fix a reference vertex $o \in G^0$, once and for all.
Define $L_x : \text{dom } \mathcal{E} \rightarrow \mathbb{R}$ by $L_x u := u(x) - u(o)$.

L_x is continuous on $\mathcal{H}_\mathcal{E}$, so $L_x u = \langle v_x, u \rangle_\mathcal{E}$ for some $v_x \in \mathcal{H}_\mathcal{E}$.

Theorem: $x \mapsto v_x$ is an isometric embedding of (G, R^F) into $\mathcal{H}_\mathcal{E}$:

$$R^F(x, y) = \| v_x - v_y \|_\mathcal{E}^2.$$
The energy space \mathcal{H}_E

$\text{dom } \mathcal{E}/\mathbb{R}1$ is a Hilbert space

$$\mathcal{H}_E = \text{dom } \mathcal{E}/\mathbb{R}1, \quad \langle u, v \rangle_\mathcal{E} := \mathcal{E}(u, v).$$

Fix a reference vertex $o \in G^0$, once and for all. Define $L_x : \text{dom } \mathcal{E} \to \mathbb{R}$ by $L_x u := u(x) - u(o)$.

L_x is continuous on \mathcal{H}_E, so $L_x u = \langle v_x, u \rangle_\mathcal{E}$ for some $v_x \in \mathcal{H}_E$.

Theorem: $x \mapsto v_x$ is an isometric embedding of (G, R^F) into \mathcal{H}_E:

$$R^F(x, y) = \|v_x - v_y\|^2_\mathcal{E}.$$

Definition

v_x is a *dipole*. The collection $\{v_x\}_{x \in G^0}$ is the *energy kernel*.

Theorem: $\{v_x\}_{x \in G^0}$ is a *reproducing kernel*:

$$\langle v_x, u \rangle_\mathcal{E} = u(x) - u(o) \text{ for all } u \in \mathcal{H}_E.$$
The structure of \mathcal{H}_ε

$\text{dom } \mathcal{E}/\mathbb{R}^1$ is a Hilbert space

$$\mathcal{H}_\varepsilon = \text{dom } \mathcal{E}/\mathbb{R}^1, \quad \langle u, v \rangle_\varepsilon := \mathcal{E}(u, v).$$

Theorem: $\mathcal{H}_\varepsilon = \text{Fin} \oplus \mathcal{H}_{\text{arm}}$, where

$\mathcal{H}_{\text{arm}} := \{ h \in \mathcal{H}_\varepsilon : \Delta h(x) = 0, \forall x \in G^0 \}$, and

$\text{Fin} := [\{ f \in \mathcal{H}_\varepsilon : f(x) = k, \text{ for all but finitely many } x \in G^0 \}]_\varepsilon.$
The structure of $\mathcal{H}_\mathcal{E}$

$\text{dom} \mathcal{E}/\mathbb{R}1$ is a Hilbert space

$$\mathcal{H}_\mathcal{E} = \text{dom} \mathcal{E}/\mathbb{R}1, \quad \langle u, v \rangle_\mathcal{E} := \mathcal{E}(u, v).$$

Theorem: $\mathcal{H}_\mathcal{E} = \mathcal{F}_\text{in} \oplus \mathcal{H}_\text{arm}$, where

- $\mathcal{H}_\text{arm} := \{ h \in \mathcal{H}_\mathcal{E} : \Delta h(x) = 0, \forall x \in G^0 \}$, and
- $\mathcal{F}_\text{in} := [\{ f \in \mathcal{H}_\mathcal{E} : f(x) = k, \text{ for all but finitely many } x \in G^0 \}]_\mathcal{E}$.

Theorem (Discrete Gauss-Green Formula)

$$\langle u, v \rangle_\mathcal{E} = \sum_{G^0} u \Delta v + \sum_{\text{bd } G} u \frac{\partial v}{\partial n}$$

$$\int_U \nabla \varphi \cdot \nabla \psi \, dV = -\int_U \varphi \Delta \psi \, dV + \int_{\partial U} \varphi \frac{\partial}{\partial n} \psi \, dS$$
The structure of \mathcal{H}_E

$\text{dom } E / \mathbb{R}1$ is a Hilbert space

$$\mathcal{H}_E = \text{dom } E / \mathbb{R}1, \quad \langle u, v \rangle_E := E(u, v).$$

Theorem: $\mathcal{H}_E = \text{Fin} \oplus \text{Harm}$, where

- $\text{Harm} := \{h \in \mathcal{H}_E : \Delta h(x) = 0, \forall x \in G^0\}$, and
- $\text{Fin} := [\{f \in \mathcal{H}_E : f(x) = k, \text{ for all but finitely many } x \in G^0\}]_E$.

Theorem (Discrete Gauss-Green Formula)

$$\langle u, v \rangle_E = \sum_{G^0} u \Delta v + \sum_{\text{bd } G} u \frac{\partial v}{\partial n}$$

For $v = f + h$, with $f \in \text{Fin}$, $h \in \text{Harm}$, $E(v) = E(f) + E(h)$

$$\| v \|_E^2 = \sum_{G^0} f \Delta f + \sum_{\text{bd } G} h \frac{\partial h}{\partial n}$$
Theorem (Discrete Gauss-Green)

For \(u, v \in \text{dom } \mathcal{E} \), \(\langle u, v \rangle_{\mathcal{E}} = \sum_{G^0} u \Delta v + \sum_{\text{bd } G} u \frac{\partial v}{\partial n}. \)

Let \(G_k \subseteq G_{k+1}, G = \bigcup G_k \), as before.

\[
\text{bd } G_k := \{ x \in G_k : \exists y \in G_k^c, y \sim x \}
\]

\[
\frac{\partial v}{\partial n}(x) := \sum_{y \in G_k} c_{xy}(v(x) - v(y)), \quad x \in \text{bd } G_k
\]

Think: \(\frac{\partial v}{\partial n}(x) = \Delta|_{G_k}(x). \)
Theorem (Discrete Gauss-Green)

For \(u, v \in \text{dom } \mathcal{E} \),

\[
\langle u, v \rangle_{\mathcal{E}} = \sum_{G^0} u \Delta v + \sum_{\partial G} u \frac{\partial v}{\partial n}.
\]
Theorem (Discrete Gauss-Green)

For \(u, v \in \text{dom } \mathcal{E} \), \(\langle u, v \rangle_{\mathcal{E}} = \sum_{G^0} u \Delta v + \sum_{\text{bd } G} u \frac{\partial v}{\partial n} \).

\[
\sum_{\text{bd } G} u \frac{\partial v}{\partial n} := \lim_{k \to \infty} \sum_{x \in \text{bd } G_k} u(x) \frac{\partial v}{\partial n}(x).
\]
Theorem (Discrete Gauss-Green)

For $u, v \in \text{dom } \mathcal{E}$, $\langle u, v \rangle_\mathcal{E} = \sum_{G^0} u \Delta v + \sum_{\partial G} u \frac{\partial v}{\partial n}$.

Theorem (PJ & EP)

The following are equivalent:

1. $\mathcal{H}_\mathcal{E} = \text{Fin} = [\text{functions of finite support}]_{\mathcal{E}} = [\text{span } \{\delta_x\}]_{\mathcal{E}}$.
2. $\mathcal{H}_{\text{arm}} = 0$.
3. $\sum_{\partial G} u \frac{\partial v}{\partial n} = 0$ for all $u, v \in \mathcal{H}_\mathcal{E}$. (i.e., $\mathcal{E}(u, v) = \langle u, \Delta v \rangle_{\mathcal{E}^2}$.)

Theorem

$\mathcal{H}_\mathcal{E} = \text{Fin} \oplus \mathcal{H}_{\text{arm}}$.
\[R^F(x, y) = (v_x - v_y)(x) - (v_x - v_y)(y) \quad (2a) \]
\[= \mathcal{E}(v_x - v_y) \quad (2b) \]
\[= \min\{D(I) : \text{div} \, I = \delta_x - \delta_y \text{ and } I = \sum \xi_\gamma \chi_\gamma \} \quad (2c) \]
\[= (\min\{\mathcal{E}(v) : v(x) = 1, v(y) = 0\})^{-1} + \mathcal{E}(P_{\text{Harm}}(v_x - v_y)) \quad (2d) \]
\[= \inf\{\kappa \geq 0 : |v(x) - v(y)|^2 \leq \kappa \mathcal{E}(v), \forall v \in \text{dom} \, \mathcal{E} \} \quad (2e) \]
\[= \sup\{|v(x) - v(y)|^2 : \mathcal{E}(v) \leq 1, \forall v \in \text{dom} \, \mathcal{E} \} \quad (2f) \]

\[R^W(x, y) = \min\{v(x) - v(y) : \Delta v = \delta_x - \delta_y, v \in \text{dom} \, \mathcal{E} \} \quad (3a) \]
\[= \min\{\mathcal{E}(v) : \Delta v = \delta_x - \delta_y, v \in \text{dom} \, \mathcal{E} \} \quad (3b) \]
\[= \min\{D(I) : \text{div} \, I = \delta_x - \delta_y \} \quad (3c) \]
\[= (\min\{\mathcal{E}(v) : v(x) = 1, v(y) = 0\})^{-1} \quad (3d) \]
\[= \inf\{\kappa \geq 0 : |v(x) - v(y)|^2 \leq \kappa \mathcal{E}(v), \forall v \in \text{Fin} \} \quad (3e) \]
\[= \sup\{|v(x) - v(y)|^2 : \mathcal{E}(v) \leq 1, \forall v \in \text{Fin} \} \quad (3f) \]
R^F \text{ vs. } R^W \text{ in terms of boundary conditions on } \triangle

R^F(x, y) = u(x) - u(y) \text{ where } u \text{ is the limit of the solutions to}
\begin{align*}
\Delta u &= \delta_x - \delta_y, \quad \text{on } G_k, \\
\frac{\partial u}{\partial n} &= 0, \quad \text{on } G \setminus G_k,
\end{align*}

R^W(x, y) = u(x) - u(y) \text{ where } u \text{ is the limit of the solution to}
\begin{align*}
\Delta u &= \delta_x - \delta_y, \quad \text{on } G_k, \\
u &= \text{const}, \quad \text{on } G \setminus G_k.
\end{align*}

\begin{align*}
\mathcal{H}E \bigg|_H^F &= \{ u \in \text{dom } E : u(x) - u(y) = 0 \text{ unless } x, y \in H \} \\
\text{and} \quad \mathcal{H}E \bigg|_H^W &= \{ u \in \mathcal{H}E : \text{spt } u \subseteq H \}
\end{align*}

Both are spaces of functions which have no energy outside of \(H \).
Shortcuts through ∞

\[
R^F(x, y) = \min\{D(I) : \text{div } I = \delta_x - \delta_y \text{ and } I = \sum \xi_\gamma \chi_\gamma\}
\]

\[
R^W(x, y) = \min\{D(I) : \text{div } I = \delta_x - \delta_y\}
\]

\[
E(v_x) = 1 = R^F(x, o)
\]
Shortcuts through ∞

\[R^F(x, y) = \min \{ D(I) : \text{div} I = \delta_x - \delta_y \text{ and } I = \sum \xi_\gamma \chi_\gamma \} \]

\[R^W(x, y) = \min \{ D(I) : \text{div} I = \delta_x - \delta_y \} \]
Resistance analysis of infinite networks

The Hilbert space formalism

The discrete Gauss-Green formula

Shortcuts through \(\infty\)

\[
R^F(x, y) = \min\{D(I) : \text{div } I = \delta_x - \delta_y \text{ and } I = \sum \xi_\gamma \chi_\gamma\}
\]

\[
R^W(x, y) = \min\{D(I) : \text{div } I = \delta_x - \delta_y\}
\]

![Diagram showing shortcuts](image)

\[
R(x, o) := \min\{\mathcal{E}(u) : \Delta u = \delta_x - \delta_o\}
\]

\[
\mathcal{E}(f_x) = \frac{3}{4} < 1 = \mathcal{E}(v_x)
\]

Note that some current “paths” pass through \(\infty\).
A nontrivial harmonic function in $\text{dom } \mathcal{E}$

Let $c_{xy} = 1$. Then $\mathcal{E}(h) = 1$ and $\lim_{n \to \pm\infty} h(x_n) = \pm 1$.

$h(x) = \pm \left(1 - \frac{1}{2^{\left| x \right|}} \right)$

Intuition: $\mathcal{Harm} \neq 0$ means the network “grows fast”.

More precisely, (G, c) is an expander: $\inf_{|S| < \infty} \frac{|\text{bd } S|}{|S|} > 0$.
Theorem (Discrete Gauss-Green formula)
For $u, v \in \text{dom }\mathcal{E}$, $\langle u, v \rangle_\mathcal{E} = \sum_{G^0} u \Delta v + \sum_{bd G} u \frac{\partial v}{\partial n}$.

Corollary (Boundary sum representation for harmonic functions)
For $u \in \mathcal{Harm}$, and $h_x = P_{\mathcal{Harm}}\nu_x$,
$$u(x) = \sum_{bd G} u \frac{\partial h_x}{\partial n} + u(o).$$

Proof. Let $v = h_x$. Then $\langle u, h_x \rangle_\mathcal{E} = u(x) - u(o)$.

Recall:
$$\|v\|_\mathcal{E}^2 = \sum_{G^0} f \Delta f + \sum_{bd G} h \frac{\partial h}{\partial n}$$
Theorem (Discrete Gauss-Green formula)
For $u, v \in \text{dom } \mathcal{E}$, $\langle u, v \rangle_{\mathcal{E}} = \sum_{G^0} u \Delta v + \sum_{\text{bd } G} u \frac{\partial v}{\partial n}$.

Corollary (Boundary sum representation for harmonic functions)
For $u \in \mathcal{Harm}$, and $h_x = P_{\mathcal{Harm}} v_x$,
$$u(x) = \sum_{\text{bd } G} u \frac{\partial h_x}{\partial n} + u(o).$$

Recall the Poisson kernel $k : \Omega \times \partial \Omega \to \mathbb{R}$ from which
$$u(x) = \int_{\partial \Omega} u(y) k(x, dy), \quad y \in \partial \Omega,$$
for any bounded harmonic function u.

Fatou-Primalov: a bounded harmonic function can be extended to the boundary almost everywhere. (So $u(y)$ makes sense a.e.)
\[u(x) = \sum_{bd \ G} u \frac{\partial h_x}{\partial n} + u(o) \quad \leftrightarrow \quad u(x) = \int_{\partial \Omega} u(y)k(x, dy), \ y \in \partial \Omega. \]

Goals:

- A measure space \(bd \ G \) and a measure \(\mathbb{P} \) on it.
- An extension of \(u, h_x \in \mathcal{H}arm \) to elements \(\xi \in bd \ G \).
- A kernel \(k(x, d\xi) := h_x(\xi)d\mathbb{P}(\xi) \) on \(G^0 \times bd \ G \).
- An integral representation \(u(x) = \int_{bd \ G} u(\xi)k(x, d\xi) + u(o) \).
- A concrete realization of \(\xi \in bd \ G \).
Problem: $\mathcal{H}_\mathcal{E}$ is too small to support \mathbb{P}.

Theorem (Nelson): If μ is a σ-finite measure on a Hilbert space H, then $\mu H = 0$.
Problem: $\mathcal{H}_{\mathcal{E}}$ is too small to support \mathbb{P}.

Theorem (Nelson): If μ is a σ-finite measure on a Hilbert space H, then $\mu H = 0$.

Solution: construct a Gel’fand triple for $\mathcal{H}_{\mathcal{E}}$.

- $S \subseteq \mathcal{H}_{\mathcal{E}} \subseteq S'$.
- S is dense in $\mathcal{H}_{\mathcal{E}}$ with respect to \mathcal{E}.
- S has another, strictly finer, “test function” topology.
- S' is the dual of S with respect to the test function topology.

Think: $S = \{\text{test functions}\}$ and $S' = \{\text{distributions}\}$.

The boundary will be some suitable subspace of S'.
The space of test functions ("of rapid decay")

Definition
Let \(V = \text{span}\{v_x\} \) be the \textit{finite linear combinations} of dipoles.

Let \(\Delta_V \) denote any self-adjoint extension of the (graph) closure of the Laplacian when taken to have this dense domain.
The space of test functions ("of rapid decay")

Definition
Let $V = \text{span}\{v_x\}$ be the \textit{finite linear combinations} of dipoles.

Let Δ_V denote any self-adjoint extension of the (graph) closure of the Laplacian when taken to have this dense domain.

Definition
Define $S := \text{dom}(\Delta_V^\infty) := \bigcap_{p=1}^\infty \text{dom}(\Delta_V^p)$.

S is a Fréchet space with seminorms $\|u\|_p := \|\Delta_V^p u\|_E$.
A Gel’fand triple for \mathcal{H}_ε

Theorem. $S \subseteq \mathcal{H}_\varepsilon \subseteq S'$ is a Gel’fand triple.

The energy form extends to a pairing on $S \times S'$ defined by

$$\langle u, \xi \rangle_{\mathcal{W}} = \langle \Delta_v^p u, \Delta_v^{-p} \xi \rangle_{\varepsilon} = \lim_{n \to \infty} \xi(E_n u).$$

Note: $\Delta_v^{-p} \xi$ is the p^{th} primitive (“antiderivative”) of ξ, nothing to do with the inverse of Δ_v.

$$\xi \in S' \iff |\xi(u)| \leq C\|\Delta_v^p u\|_\varepsilon,$$

so $\varphi(\Delta_v^p u) := \langle u, \xi \rangle$ is continuous on $\text{span}\{\Delta_v^p u : u \in \mathcal{H}_\varepsilon\}$.

A Gel’fand triple for \mathcal{H}_E

Theorem. $S \subseteq \mathcal{H}_E \subseteq S'$ is a Gel’fand triple.

The energy form extends to a pairing on $S \times S'$ defined by

$$\langle u, \xi \rangle = \langle \Delta^p u, \Delta^{-p} \xi \rangle = \lim_{n \to \infty} \xi(E_n u).$$

Note: $\Delta^{-p} \xi$ is the p^{th} primitive (“antiderivative”) of ξ, nothing to do with the inverse of Δ_V.

Note: $E_n u$ is the spectral truncation of u.

$$E_n u := \int_{1/n}^{n} E(d\lambda) u.$$

$E_n u \in S$ because

$$\|\Delta^p V E_n u\|_{\mathcal{E}}^2 \leq \int_{1/n}^{n} \lambda^{2p} \|E(d\lambda) u\|_{\mathcal{E}}^2 \leq n^{2p} \|u\|_{\mathcal{E}}^2.$$

Theorem. S is a dense analytic subspace of \mathcal{H}_E (w.r. \mathcal{E}).
A Gel’fand triple for \mathcal{H}_E: $S \subseteq \mathcal{H}_E \subseteq S'$

What to do with a Gel’fand triple?

Minlos: $\{\text{pos. def. fns on } S\} \leftrightarrow \{\text{Radon prob. meas. on } S'\}$.

$R^F(x, y) = \|v_x - v_y\|^2_{\mathcal{E}}$ is negative semidefinite, so $e^{-\frac{1}{2}||u-v||^2_{\mathcal{E}}}$ is positive definite on $\mathcal{H}_E \times \mathcal{H}_E$. (Bochner)

Now we have $\mathcal{H}_E \subseteq S'$ and $L^2(S', \mathbb{P})$ to work with.
A Gel’fand triple for \mathcal{H}_E: $S \subseteq \mathcal{H}_E \subseteq S'$

What to do with a Gel’fand triple?

Minlos: $\{\text{pos. def. fns on } S\} \leftrightarrow \{\text{Radon prob. meas. on } S'\}$.

$R^F(x, y) = \|v_x - v_y\|_E^2$ is negative semidefinite, so $e^{\frac{-1}{2}\|u-v\|_E^2}$ is positive definite on $\mathcal{H}_E \times \mathcal{H}_E$. (Bochner)

Now we have $\mathcal{H}_E \subseteq S'$ and $L^2(S', \mathbb{P})$ to work with.

The Wiener transform $\mathcal{W} : v_x \mapsto \langle v_x, \cdot \rangle_\mathcal{W}$ is an isometric embedding of \mathcal{H}_E into $L^2(S', \mathbb{P})$:

$$\langle u, v \rangle_\mathcal{E} = \int_{S'} \tilde{u} \tilde{v} \, d\mathbb{P}, \quad \tilde{u}(\xi) := \langle u, \xi \rangle_\mathcal{W}.$$
A Gel’fand triple for \mathcal{H}_E: $S \subseteq \mathcal{H}_E \subseteq S'$

What to do with a Gel’fand triple?

Minlos: $\{\text{pos. def. fns on } S\} \leftrightarrow \{\text{Radon prob. meas. on } S'\}$.

$R^F(x, y) = \|v_x - v_y\|_E^2$ is negative semidefinite, so $e^{-\frac{1}{2}\|u-v\|_E^2}$ is positive definite on $\mathcal{H}_E \times \mathcal{H}_E$. (Bochner)

Now we have $\mathcal{H}_E \subseteq S'$ and $L^2(S', \mathbb{P})$ to work with.

The Wiener transform $\mathcal{W}: v_x \mapsto \langle v_x, \cdot \rangle_{\mathcal{W}}$ is an isometric embedding of \mathcal{H}_E into $L^2(S', \mathbb{P})$:

$$\langle u, v \rangle_{\mathcal{E}} = \int_{S'} \bar{u}v \, d\mathbb{P}, \quad u(\xi) := \langle u, \xi \rangle_{\mathcal{W}}.$$
Boundary integral representation of $u \in \mathcal{H}arm$

Theorem. For $u \in \mathcal{H}arm$ and $h_x = P_{\mathcal{H}arm}v_x$,

$$u(x) = \int_{S'} u(\xi) h_x(\xi) \, d\mathbb{P}(\xi) + u(o).$$

Substitute $u \in \mathcal{H}arm$ and $v = v_x$ into $\langle u, v \rangle_{\mathcal{E}} = \int_{S'} \bar{u}v \, d\mathbb{P}$:

$$\langle v_x, u \rangle_{\mathcal{E}} = \int_{S'} uv_x \, d\mathbb{P} = u(x) - u(o).$$
Boundary integral representation of $u \in \mathcal{Harm}$

Theorem. For $u \in \mathcal{Harm}$ and $h_x = P_{\mathcal{Harm}} v_x$,

$$u(x) = \int_{S'} u(\xi) h_x(\xi) \, d\mathbb{P}(\xi) + u(o).$$

Compare to $u(x) = \sum_{bd \, G} u \frac{\partial h_x}{\partial n} + u(o) = \int_{bd \, G} u(\xi) k(x, d\xi)$.

Goals:
- A measure space $bd \, G$ and a measure \mathbb{P} on it.
- An extension of $u, h_x \in \mathcal{Harm}$ to elements $\xi \in bd \, G$.
- A kernel $k(x, d\xi)$ on $G^0 \times bd \, G$.
- An integral representation $u(x) = \int_{bd \, G} u(\xi) k(x, d\xi) + u(o)$.
- A concrete realization of $\xi \in bd \, G$.
The kernel $k(x, dP)$

Since $u(x) = \int_{S'} uh_x dP + u(o)$, the obvious choice is $h_x dP$.

A problem: $\int_{S'} k(x, d\xi) = \int_{S'} 1h_x dP = 0$.

One expects $\int_{S'} k(x, d\xi) = 1$.
The kernel $k(x, dP)$

From the Wiener isometry:

$$L^2(S', P) = \bigoplus_{n=0}^{\infty} \mathcal{H} \otimes^n = \mathbb{C} 1 \oplus \mathcal{H} \oplus \mathcal{H}^2 \oplus \ldots$$

$$\mathcal{H} = \mathcal{W}(\mathcal{H}_\epsilon)$$

$\mathcal{H} \otimes^0 := \mathbb{C} 1$ for a unit “vacuum” vector 1.

$\mathcal{H} \otimes^n$ is the n-fold symmetric tensor product of \mathcal{H} with itself.
The kernel \(k(x, d\mathbb{P}) \)

From the Wiener isometry:

\[
L^2(S', \mathbb{P}) = \bigoplus_{n=0}^{\infty} \mathcal{H}^\otimes n = \mathbb{C}1 \oplus \mathcal{H} \oplus \mathcal{H}^2 \oplus \ldots.
\]

\(\mathcal{H} = \mathcal{W}(\mathcal{H}_\varepsilon) \)

\(\mathcal{H}^\otimes 0 := \mathbb{C}1 \) for a unit “vacuum” vector \(1 \).

\(\mathcal{H}^\otimes n \) is the \(n \)-fold symmetric tensor product of \(\mathcal{H} \) with itself.

\(u \mapsto \langle u, \cdot \rangle \in \mathcal{H}^1, (u, v) \mapsto \langle u, \cdot \rangle \langle v, \cdot \rangle \in \mathcal{H}^2, \) etc.

Observe that \(1 \) is orthogonal to \(\text{Fin} \) and \(\text{Harm} \), but is not the zero element of \(L^2(S'_G, \mathbb{P}) \).
The kernel \(k(x, d\mathbb{P}) = (1 + h_x) d\mathbb{P} \)

Now \(\int_{S'} k(x, d\mathbb{P}) = \int_{S'} 1 d\mathbb{P} + \int_{S'} h_x d\mathbb{P} = 1. \)

It follows that \(h_x \geq -1 \) \(\mathbb{P} \)-a.e. on \(S' \).

Also, \(k(x, \cdot) \ll \mathbb{P} \) with Radon-Nikodym derivative \(\frac{d\|k_x}{d\mathbb{P}} = 1 + h_x. \)

\(k(x, d\mathbb{P}) = (1 + h_x) d\mathbb{P} \) is supported on \(G^0 \times S' / \mathcal{F} \in \).

Let \(f \in \mathcal{F} \in \). Since \(h_x \) is harmonic,

\[
\int_{S'_G} f k(x, d\mathbb{P}) = \int_{S'_G} (1 + h_x) f d\mathbb{P} \\
= \int_{S'_G} 1 f \mathbb{P} + \int_{S'_G} h_x f d\mathbb{P} \\
= 0 + \langle h_x, f \rangle \mathcal{E} \\
= 0.
\]
The boundary $\text{bd } G$

A path is a sequence of vertices $\gamma = (x_0, x_1, \ldots)$ with $x_i \sim x_{i-1}$.

Define $\gamma \simeq \gamma'$ iff $\lim_{n \to \infty} (h(\gamma_n) - h(\gamma'_n)) = 0$ for every $h \in \mathcal{Harm}$.
The boundary \(\text{bd} \, G \)

A path is a sequence of vertices \(\gamma = (x_0, x_1, \ldots) \) with \(x_i \sim x_{i-1} \).

Define \(\gamma \simeq \gamma' \) iff \(\lim_{n \to \infty} (h(\gamma_n) - h(\gamma'_n)) = 0 \) for every \(h \in \mathcal{Harm} \).

Let \(\beta = [\gamma] \) be such an equivalence class. Define \(\nu_{\gamma} := \lim_{n \to \infty} k(x_n, d\mathbb{P}) \).
The boundary $\text{bd} \ G$

A path is a sequence of vertices $\gamma = (x_0, x_1, \ldots)$ with $x_i \sim x_{i-1}$.

Define $\gamma \simeq \gamma'$ iff $\lim_{n \to \infty} (h(\gamma_n) - h(\gamma'_n)) = 0$ for every $h \in \mathcal{H}_{\text{arm}}$.

Let $\beta = [\gamma]$ be such an equivalence class. Define

$$\nu_\gamma := \lim_{n \to \infty} k(x_n, d\mathbb{P}).$$

Alaoglu’s theorem gives a weak-\star limit, so for any $u \in \mathcal{H}_{\text{arm}},$

$$u(x_n) = \int_{S'/\text{Fin}} u(1 + h_x) \, d\mathbb{P} \xrightarrow{n \to \infty} \int_{S'/\text{Fin}} u \, d\nu_\gamma := u(\beta).$$

So $\text{bd} \ G$ is the set of all equivalence classes of infinite paths in G, under this equivalence relation.
The boundary $\text{bd } G$

Compare $\mathds{1}_k(x_n, d\mathbb{P})$ to an approximate identity in Fourier analysis:

$$\int_{S'/\mathcal{F}_{\text{Fin}}} \mathds{1}_k(x_n, d\mathbb{P}) = 1 \text{ for each } n, \text{ and}$$

$$\lim_{n \to \infty} \int_{S'/\mathcal{F}_{\text{Fin}}} \mathds{1}_k(x_n, d\mathbb{P}) \text{ is a Dirac mass (at } \beta).$$
The boundary $\text{bd} \ G$

Compare $1_k(x_n, d\mathbb{P})$ to an approximate identity in Fourier analysis:

$$\int_{S'/\mathcal{F}_{\text{fin}}} 1_k(x_n, d\mathbb{P}) = 1$$

for each n, and

$$\lim_{n \to \infty} \int_{S'/\mathcal{F}_{\text{fin}}} 1_k(x_n, d\mathbb{P})$$

is a Dirac mass (at β).

Intuition: on any finite subset G_k, define a probability measure μ_x on $\text{bd} \ G_k$ by

$$\mu_x(y) := \mathbb{P}_x[X_{\tau_{\text{bd} G_k}} = y], \text{ for all } y \in \text{bd} \ G_k.$$.
The boundary $\text{bd } G$

Compare $\mathbb{1}(x_n, d\mathbb{P})$ to an approximate identity in Fourier analysis:

$$\int_{S'/\mathcal{F}_\text{in}} \mathbb{1}(x_n, d\mathbb{P}) = 1 \text{ for each } n,$$
$$\lim_{n \to \infty} \int_{S'/\mathcal{F}_\text{in}} \mathbb{1}(x_n, d\mathbb{P}) \text{ is a Dirac mass (at } \beta).$$

Intuition: on any finite subset G_k, define a probability measure μ_x on $\text{bd } G_k$ by

$$\mu_x(y) := \mathbb{P}_x[X_{\tau_{\text{bd } G_k}} = y], \text{ for all } y \in \text{bd } G_k.$$

Consider Brownian motion on a disk with such an exit measure.
Resistance analysis of infinite networks

Erin P. J. Pearse
erin-pearse@uiowa.edu

Joint work with Palle E. T. Jorgensen

VIGRE Postdoctoral Fellow
Department of Mathematics
University of Iowa

University of Illinois, Urbana-Champaign

April 6, 2009
Approximating the reproducing kernels on the tree

\[f_{\mathcal{X}}^{(k)} \]

\[h_{\mathcal{X}}^{(k)} \]

\[j = 0, 1, \ldots, k \]

\[-\frac{2^k - 1}{2^{k+2} - 2}, \frac{2^{k-j} - 1}{2^{k+2} - 2} \]

\[-\frac{2^j - 1}{2^{k+2} - 2} \]

\[1 - \frac{2^k - 1}{2^{k+2} - 2} \]

\[1 - \frac{2^{k-1} - 1}{2^{k+2} - 2} \]

\[j = 0, 1, \ldots, k \]

\[\mathcal{X} \]

\[\mathcal{Y} \]
Definition ((Network) Laplacian Δ)
A linear difference operator; weighted average of neighbouring values.

$$(\Delta v)(x) := \sum_{y \sim x} c_{xy} (v(x) - v(y)).$$

If the operator c is multiplication by $c(x) := \sum_{y \sim x} c_{xy}$, then

$$\Delta = c - T,$$

where T is the transfer operator (weighted adjacency matrix).
Definition ((Network) Laplacian \triangle)

A linear difference operator; weighted average of neighbouring values.

$$(\triangle v)(x) := \sum_{y \sim x} c_{xy} (v(x) - v(y)).$$

If the operator c is multiplication by $c(x) := \sum_{y \sim x} c_{xy}$, then

$$\triangle = c - T,$$

where T is the transfer operator (weighted adjacency matrix).

$\Delta_p = 1 - c^{-1} T$ is the “probabilistic Laplacian”.

$P := c^{-1} T$ gives transitions with probabilities $p(x, y) = \frac{c_{xy}}{c(x)}$.
Laplacian and random walk

\[\Delta_p = 1 - c^{-1} T \] is the “Probabilistic Laplacian”.

\[\mathbf{P} := c^{-1} T \] gives transitions with probabilities \(p(x, y) = \frac{c_{xy}}{c(x)} \).

Let \(\mu \) be a probability measure on \(G^0 \) giving the initial distribution of a random walker.

Then: \(\mu \mathbf{P} \) gives the distribution of the walker after 1 step, and \(\mu \mathbf{P}^n \) gives the distribution after \(n \) steps.

To start a random walk at \(x \in G^0 \), let \(\mu = \delta_x \).
Laplacian and random walk

\[\Delta_p = 1 - c^{-1}T \] is the “Probabilistic Laplacian”.

\[P := c^{-1}T \] gives transitions with probabilities \(p(x, y) = \frac{c_{xy}}{c(x)}. \)

Let \(\mu \) be a probability measure on \(G^0 \) giving the initial distribution of a random walker.

Then: \(\mu P \) gives the distribution of the walker after 1 step, and \(\mu P^n \) gives the distribution after \(n \) steps.

To start a random walk at \(x \in G^0 \), let \(\mu = \delta_x \).

Similarly, let \(u \) be a function on \(G^0 \).

Then: \(Pu \) gives the expected value of \(u \) after 1 step, and \(P^n u \) gives the expected value of \(u \) after \(n \) steps.
Laplacian and random walk

Definition (Harmonic function)

\(h \) is \textit{harmonic} on \(F \subseteq G^0 \) iff \(\Delta h(x) = 0 \) for each \(x \in G^0 \).

Definition (Dirichlet problem)

Designate \(B \subseteq G^0 \) as a “boundary”.
Given \(g : B \to \mathbb{R} \), find \(h \) so \(h{\mid}_B = g \) and \(\Delta h(x) = 0 \) for \(x \in G^0 \setminus B \).

Theorem (Doob)

\textit{The solution is given by} \(h(x) = \mathbb{E}(g(X_{\tau_B})) \), \textit{where} \(X_n \) \textit{is the location of the random walker at time} \(n \), \textit{and} \(\tau_B := \min\{n : X_n \in B\} \).

\(\tau_B \) \textit{is called the hitting time of} \(B \).
Trace and Schur complement

For a finite subset $H \subseteq G^0$, write the Laplacian of G in block form with H appearing first:

$$
\Delta = \begin{bmatrix} H & B^T \\ B & D \end{bmatrix}.
$$

The Schur complement is $\Delta_H := A - B^T D^{-1} B$.
Trace and Schur complement

For a finite subset $H \subseteq G^0$, write the Laplacian of G in block form with H appearing first:

$$\Delta = \begin{bmatrix} A & B^T \\ B & D \end{bmatrix}.$$

The **Schur complement** is $\Delta_H := A - B^T D^{-1} B$.

Δ_H defines a subnetwork called the **trace** of G to H. The trace H^S has the same vertices as H and edges given by

$$c^H_{xy} = c_{xy} + c(x) \mathbb{P}[x \to y | H^c].$$

$\mathbb{P}[x \to y | H^c]$ is the probability that the RW started at x makes it to y without passing through H.
The trace resistance is then defined to be

$$R^S(x, y) := \lim_{k \to \infty} R^G_{k}(x, y),$$

where \(\{G_k\}\) is any exhaustion of \(G\).

Theorem: Let \(H^0 = \{x, y\}\) be any two vertices of \(G\). Then the trace resistance can be computed via

$$\Delta_H = \frac{1}{R^S(x, y)} \left[\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array} \right] = A - B^T D^{-1} B.$$
Trace and Schur complement

The *trace resistance* is then defined to be

\[R^S(x, y) := \lim_{k \to \infty} R_{G_k}^S(x, y), \]

where \(\{G_k\} \) is any exhaustion of \(G \).

Theorem: Let \(H^0 = \{x, y\} \) be any two vertices of \(G \). Then the trace resistance can be computed via

\[\Delta_H = \frac{1}{R^S(x, y)} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = A - B^T D^{-1} B. \]

Theorem: The trace resistance \(R^S(x, y) \) is given by

\[R^S(x, y) = \frac{1}{c(x) \mathbb{P}[x \to y]}. \]
Trace and Schur complement

The *trace resistance* is then defined to be

\[R^S(x, y) := \lim_{k \to \infty} R_{G_k}^S(x, y), \]

where \(\{G_k\} \) is any exhaustion of \(G \).

Theorem: \(R^S(x, y) = R_{G_k}^S(x, y) \) for all \(k \).
Trace and Schur complement

The \textit{trace resistance} is then defined to be

\[R^S(x, y) := \lim_{k \to \infty} R^S_{G_k}(x, y), \]

where \(\{G_k\} \) is any exhaustion of \(G \).

\textbf{Theorem:} \(R^S(x, y) = R^S_{G_k}(x, y) \) for all \(k \).

\textbf{Theorem:} \(R^S_{G_k}(x, y) \) decreases monotonically to \(R^S(x, y) \).

Therefore, \(R^F(x, y) = R^S(x, y) \).
Trace and Schur complement

The *trace resistance* is then defined to be

\[R^S(x, y) := \lim_{k \to \infty} R_{G_k}^S(x, y), \]

where \(\{G_k\} \) is any exhaustion of \(G \).

Theorem: \(R_{G_k}(x, y) \) decreases monotonically to \(R^S(x, y) \). Therefore, \(R^F(x, y) = R^S(x, y) \).

Compare:

\[R^F(x, y) = \frac{1}{c(x) \mathbb{P}[x \to y]} = \frac{1}{c(x) \sum_{\gamma \in \Gamma(x, y)} \mathbb{P}(\gamma)}. \]

\[R^F(x, y) = \min\{D(I) : \text{div } I = \delta_x - \delta_y \text{ and } I = \sum \xi_{\gamma} \chi_{\gamma}\}. \]

\[\mathbb{P}(\gamma) = \mathbb{P}(x_0, x_1, \ldots) := \prod_{n=1}^{\infty} p(x_{n-1}, x_n) \]
Why the Schur complement works

\[
\Delta = \begin{bmatrix}
A & B^T \\
B & D
\end{bmatrix}_{H^c}^H = \begin{bmatrix}
c_A - T_A & -T_{B^T} \\
-T_{B^T} & c_B - T_D
\end{bmatrix}.
\]

If \(\ell(G^0) := \{ f : G^0 \to \mathbb{R} \} \), the corresponding mappings are

- \(A : \ell(H) \to \ell(H) \)
- \(B^T : \ell(H^c) \to \ell(H) \)
- \(B : \ell(H) \to \ell(H^c) \)
- \(D : \ell(H^c) \to \ell(H^c) \).
Why the Schur complement works

\[
\Delta = \left[\begin{array}{cc}
A & B^T \\
B & D
\end{array} \right] = \left[\begin{array}{cc}
c_A - T_A & -T_{B^T} \\
-T_{B^T} & c_B - T_D
\end{array} \right].
\]

Since \(P = c^{-1} T \), the Schur complement is

\[
\Delta_H = (c_A - T_A) - (-T_{B^T})(c_D - T_D)^{-1}(-T_B)
\]
\[
= c_A - c_A P_A - c_A P_{B^T}(I - P_D)^{-1}c_D^{-1}c_D P_B
\]
\[
= c_A - c_A \left(P_A + P_{B^T} \left(\sum_{n=0}^{\infty} P_D^n \right) P_B \right).
\]

Next, consider an entry of the matrix \(P_A + P_{B^T} \left(\sum_{n=0}^{\infty} P_D^n \right) P_B \).
Why the Schur complement works

The \((x, y)\)th entry of the matrix \(P_A + P_B^T \left(\sum_{n=0}^{\infty} P^n_D \right) P_B:\n
\begin{align*}
P_A(x, y) + \sum_{n=0}^{\infty} \sum_{s,t} P_B^T(x, s) P^D(s, t) P_B(t, y) \\
= \mathbb{P}^{(c)} \left(\{ \gamma \in \Gamma(x, y) \mid_{H^c} : |\gamma| = 1 \} \right) + \sum_{k=2}^{\infty} \mathbb{P}^{(c)} \left(\{ \gamma \in \Gamma(x, y) \mid_{H^c} : |\gamma| = k \} \right) \\
= \mathbb{P}^{(c)} \left(\bigcup_{k=1}^{\infty} \{ \gamma \in \Gamma(x, y) \mid_{H^c} : |\gamma| = k \} \right) \\
= \mathbb{P}^{(c)} \left(\Gamma(x, y) \mid_{H^c} \right) \\
= \mathbb{P}[x \to y] \mid_{H^c}
\end{align*}