Section 12.1.
since \(\lim_{n \to \infty} \frac{1}{n} = 0 \).

Determine whether the following sequence converges or diverges. If it converges, find the limit. \(a_n = \frac{n!}{2^n} \).

Solution: Let’s first look at the first few terms of the sequence:

\[
\frac{1}{2}, \frac{1}{2}, \frac{3}{4}, \frac{3}{2}, \frac{15}{4}, \ldots
\]

It certainly appears that the terms in the sequence get bigger and bigger as \(n \) increases. More precisely, we have

\[
\frac{n!}{2^n} = \frac{n \cdot (n-1) \cdot (n-2) \cdots 2 \cdot 1}{2 \cdot 2 \cdot 2 \cdots 2 \cdot 2} = \left(\frac{n}{2}\right) \cdot \left(\frac{n-1}{2}\right) \cdot \left(\frac{n-2}{2}\right) \cdots \left(\frac{2}{2}\right) \cdot \left(\frac{1}{2}\right)
\]

(0.1)

Now, except for the last two terms, each term in the product on the right-hand side is greater than 1. That is,

\[
\left(\frac{n-j}{2}\right) > 1, \quad n > 2, \quad 0 \leq j < n.
\]

Thus the product on the right-hand side of (0.1) tends to infinity as \(n \to \infty \) and the sequence diverges.

Determine whether the sequence is increasing, decreasing or not monotonic. Is the sequence bounded?

60. \(\{(-2)^{n+1}\} \).

Solution: \(a_n = (-2)^{n+1} \) so

\[
a_{n+1} - a_n = (-2)^{n+2} - (-2)^{n+1} = (-2)^n(-2)^2 - (-2)^n(-2) = 6(-2)^n
\]

so \(a_{n+1} - a_n > 0 \) if \(n \) is even and \(a_{n+1} - a_n < 0 \) if \(n \) is odd. So the sequence is neither increasing nor decreasing so it is not monotonic. The sequence is not bounded as it is not bounded above.
62. \(a_n = \frac{2n-3}{3n+4} \).

Solution: We have

\[
a_{n+1} - a_n = \frac{2(n+1) - 3}{3(n+1) + 4} - \frac{2n - 3}{3n + 4} = \frac{(2n - 1)(3n + 4) - (2n - 3)(3n + 7)}{(3n + 4)(3n + 7)} = \frac{-17}{(3n + 4)(3n + 7)} < 0, \quad n \geq 1.
\]

and thus the sequence is decreasing. Also, \(\lim_{n \to \infty} a_n = \frac{2}{3} \) so the sequence is bounded above. Also, clearly \(a_n > 0 \) for \(n \geq 1 \). Thus the sequence is also bounded below and hence it is bounded.

64. \(a_n = ne^{-n} \).

Solution: We look at the corresponding function \(f(x) = xe^{-x} \). The derivative is

\[
f'(x) = e^{-x} - xe^{-x} = (1 - x)e^{-x}
\]

so \(f'(x) < 0 \) for \(x > 1 \) and the function is decreasing on \((1, \infty)\). Consequently, the given sequence is also decreasing. Since the sequence is decreasing, it is bounded above by \(\frac{1}{e} \) and it is bounded below by 0, so it is bounded.

\[a_n = \frac{n}{n^2 + 1} \]

Solution: Method 1: We have

\[
a_{n+1} - a_n = \frac{n + 1}{(n + 1)^2 + 1} - \frac{n}{n^2 + 1} = \frac{n + 1}{n^2 + 2n + 2} - \frac{n}{n^2 + 1} = \frac{n^3 + n^2 + n + 1 - n^3 - 2n^2 - 2n}{(n^2 + 2n + 2)(n^2 + 1)} = \frac{-1}{(n^2 + 2n + 2)(n^2 + 1)} < 0
\]

since \(1 < (n + n^2) \) for all \(n \). Hence \((a_{n+1} - a_n) < 0 \) and the sequence is decreasing.

Method 2: Define a function \(f \) by

\[f(x) = \frac{x}{x^2 + 1} \]

We calculate

\[
f'(x) = \frac{(x^2 + 1) - x(2x)}{(x^2 + 1)^2} = \frac{1 - x^2}{(x^2 + 1)^2}
\]
Thus, $f'(x) < 0$ for $x > 1$ and the function f is decreasing on $(1, \infty)$. We must therefore have that $a_n = f(n) = \frac{n}{n^2 + 1}$ is decreasing.

Next, it is clear that, for $n \geq 1$ we have $\frac{n}{n^2 + 1} > 0$ so a_n is bounded below by 0. Also, we have $n^2 + 1 > n$ for all $n \geq 1$, so a_n is bounded above by 1.

66. $n + \frac{1}{n}$.

Solution: This should be obvious now. The sequence is increasing but not bounded (as it is not bounded above).