TOPOLOGY QUALIFYING EXAM
August 1994

Work as many problems as you can. Give complete explanations, but try not to waste time verifying obvious details.

1. Suppose \(f : X \to Y \) is a bijection, and \(f(A) = f(A) \) for every \(A \subset X \). Show that \(f \) is a homeomorphism.

2. Suppose \(X \) is compact and \(A \) is an infinite subset. Show directly from the definitions that \(A \) must have a limit point.

3. Let \(\mathbb{R}_+^2 = \{(x, y) : y > 0\} \), and set
 \[
 A = \{(x, y) \in \mathbb{R}_+^2 : (x, y) \text{ lies on a line of irrational slope passing through } (0, 0)\}
 \]
 \[
 B = \{(x, y) \in \mathbb{R}_+^2 : (x, y) \text{ lies on a line of irrational slope passing through } (1, 0)\}
 \]
 a. Show \(A \cup B \) is connected.
 b. Prove that every component of \(\mathbb{R}_+^2 \setminus (A \cup B) \) is a single point.

4. Let \(X \) be a Hausdorff space. Prove that \(X \) is normal if and only if given any closed subset \(F \) and any open set \(O \) such that \(F \subset O \), there exists an open set \(U \) such that \(F \subset U \subset O \).

5. Let \(X = \prod_{i=1}^{\infty}[0, 1] \), and let \(Y = \{x \in X \mid \pi_i(x) = 0 \text{ except for finitely many } i\} \).
 a. Determine whether \(Y \) is compact when \(X \) is given the product topology.
 b. Determine whether \(Y \) is compact when \(X \) is given the box topology.

6. Suppose \(X \) is normal, and \(A \subset X \) is closed.
 a. Prove that if \(f : A \to \mathbb{R}^n \), then \(f \) extends continuously to \(X \).
 b. Now suppose \(A \) is simply connected. Prove that if \(f : A \to S^1 \), then \(f \) extends continuously to \(X \). (Hint: What is the universal cover of \(S^1 \)?)

7. Let \(X \subset \mathbb{R}^2 \) be the set of vertical lines with integer \(x \)-intercepts.
 a. Describe the construction of \(\hat{X} \), the one-point compactification of \(X \), and explain its topology.
 b. Determine whether \(\hat{X} \) is homeomorphic to the Hawaiian earring, that is, the union of all circles in \(\mathbb{R}^2 \) with center \((1/n, 0)\) and radius \(1/n \) where \(n \) is a positive integer.
 c. Determine whether \(\hat{X} \) is homeomorphic to \(\mathbb{R}/\mathbb{Z} \), that is, \(\mathbb{R} \) with \(\mathbb{Z} \) identified to a point.
Do two of the following three problems.

8. Let X denote the space resulting from the identification of the edges of a two-dimensional hexagon as indicated in the diagram below. Use Van Kampen’s theorem to compute $\pi_1(X)$.

9. Let $C(Y,Z)$ be the space of continuous maps from Y to Z. Given $f : X \times Y \to Z$, define $\tilde{f} : X \to C(Y,Z)$ by $\tilde{f}(x)(y) = f(x,y)$. Show that if f is continuous then \tilde{f} is continuous.

10. Let Y be locally path connected. Suppose $f : X \to Y$ is a local homeomorphism and that f has the path lifting property. Show that f is a covering map.