
CONVEXITY II SPRING 2000

TEST 2 – ANSWERS

In order to get full credit, all answers must be accompanied by
appropriate justifications.

1. Let P1, . . . , Pk be polytopes in En and let λ1, . . . , λk be non-negative real numbers.
Prove that each of the following sets is a polytope:

a). conv(P1 ∪ · · · ∪ Pk);
b).

⋂k
i=1 Pi;

c). λ1P1 + · · ·+ λkPk.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a). If we let V denote the set of all vertices of all the polytopes P1, . . . , Pk then
V is a finite set. Clearly

⋃k
i=1 Pi ⊂ convV and so conv

⋃k
i=1 Pi ⊂ convV .

Conversely, V ⊂
⋃k
i=1 Pi and so conv

⋃k
i=1 Pi = convV which gives the

desired result.
b). Each Pi is a bounded polyhedral set and so their intersection immediately

inherits this property. It follows that the intersection is also a polytope (see
Theorems 20.7 and 20.9).

c). If λ > 0 and P = conv(v1, . . . vt) then x ∈ λP ⇔ there are the usual
λ1, . . . , λt such that x = λ(λ1v1 + · · ·+λtvt)⇔ x ∈ conv(λv1, . . . , λvt) and
so λP is a polytope. Let P = conv(v1, . . . , vt) and Q = conv(w1, . . . , wt)
be polytopes; we can assume the same number of vi as wi by repetition,
if necessary. We have x ∈ P + Q ⇔ there are the usual λ1, . . . , λt and
µ1, . . . , µt such that

x = λ1v1 + · · ·+ λtvt + µ1w1 + · · ·+ µtwt =
t∑

i,j=1

λiµj(vi + wj).

This is equivalent to x ∈ conv(v1, . . . , vt, w1, . . . , wt) and so P + Q is a
polytope. The required result now follows by induction.

2. Denote by {p, q} the regular 3-polytope all of whose facets are p-gons and for which
there are q facets at each vertex. Let P be a 4-polytope all of whose facets are
congruent to {p, q} and for which each edge lies on precisely r such facets. Prove
that the numbers f0(P ), f1(P ), f2(P ), f3(P ) are proportional (the same ratio in
each case) to the numbers
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If φ is the angle between two faces of {p, q} that meet at an edge, show that rφ < 2π.
Use the fact that

φ = 2 sin−1

(
cos
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to deduce that there at most six possibilites for the ordered triple {p, q, r}.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Let F, E, V be the numbers of faces, edges and vertices of {p, q}. Each 2-face of
P lies on exactly 2 facets and therefore 2f2(P ) = Ff3(P ). We also have Ef3(P ) =
rf1(P ). Euler’s formula gives

f0(P ) =
(
E

r
− F

2
+ 1
)
f3(P ).

Using the values of F, E, V in terms of p, q gives
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This yields the desired result.
If e is an edge of P , we can choose a hypeplane H such that H ∩ P = e. We let

E be a hyperplane orthogonal to e which meets e. Then H ∩ E is a 2-dimensional
plane in E. We let P1 be the polytope E ∩ P and note that H ∩E supports P1 at
the vertex E ∩ e. Each facet of P , which contains e, intersects E to yield a facet of
P1. The angle between each pair of facets of P1 containing e ∩E is φ. There are r
of these facets and so rφ < 2π.

We are told that (sinφ/2)(sinπ/p) = cosπ/q, and so cosπ/q < (sinπ/r)(sinπ/p).
The only possible pairs for {p, q} are {3, 3}, {3, 4}, {3, 5}, {4, 3}, {5, 3}. This
quickly leads to the following six possibilities for {p, q, r},

{3, 3, 3}, {3, 3, 4}, {3, 3, 5}, {3, 4, 3}, {4, 3, 3}, {5, 3, 3}.

3. Let rB be a ball in E2 which is circumscribed to a regular k-gon P . Find the
smallest δ > 1 such that P ⊂ rB ⊂ δP .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Let θ denote the angle subtended by an edge of P at the center of the ball. Then
θ = 2π/k. Elementary trigonometry now shows that the distance from the midpoint
of the edge to the center is r cosπ/k. This must be the radius of the insphere of P .
It follows that δ = 1/(cosπ/k).
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4. Let C be a cube in E3 whose circumsphere is the unit ball B. Describe C∗ as fully
as you can. Prove that if S is an n-simplex with o ∈ intS, then so is S∗.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
If L is the edge length of the cube then we have 3L2 = 4 (Pythagoras’ theorem)
and so L = 2/

√
3. It follows that C =

⋂3
i=1{x ∈ E3 : |〈x, ei〉| 6 1/

√
3}. Conse-

quently C∗ = conv(±e1

√
3,±e2

√
3,±e3

√
3). This is the regular octahedron with

the indicated vertices.
Let v1, . . . , vn+1 be the (affinely independent) vertices of S. For i = 1, . . . , n +

1, let Hi be the affine hull of this set of vertices with vi removed. The affine
independence shows that Hi is a hyperplane. Since o ∈ intS we can choose vectors
w1, . . . , wn+1 such that Hi = {x ∈ E3 : 〈x,wi〉 = 1} and S =

⋂n+1
i=1 {x ∈ E3 :

〈x,wi〉 6 1}. It follows that S∗ = conv(w1, . . . , wn+1). This gives the desired
result, since we already know from the boundedness of S that o ∈ intS∗.

5. Let K be a non-empty set in En. Prove that K∗∗ = cl conv(K ∪ {o}).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We always have K ⊂ K∗∗ and K∗∗ is a closed convex set containing o. Thus
cl conv(K ∪ {o}) ⊂ K∗∗. Furthermore cl conv(K ∪ {o}) is a closed convex set
containing K. It follows that K∗∗ ⊂ (cl conv(K ∪ {o}))∗∗ = cl conv(K ∪ {o}), as
required.


