TEST 2 - ANSWERS

In order to get full credit, all answers must be accompanied by appropriate justifications.

1. Let P_{1}, \ldots, P_{k} be polytopes in \mathbb{E}^{n} and let $\lambda_{1}, \ldots, \lambda_{k}$ be non-negative real numbers. Prove that each of the following sets is a polytope:
a). $\operatorname{conv}\left(P_{1} \cup \cdots \cup P_{k}\right)$;
b). $\bigcap_{i=1}^{k} P_{i}$;
c). $\lambda_{1} P_{1}+\cdots+\lambda_{k} P_{k}$.
a). If we let V denote the set of all vertices of all the polytopes P_{1}, \ldots, P_{k} then V is a finite set. Clearly $\bigcup_{i=1}^{k} P_{i} \subset \operatorname{conv} V$ and so $\operatorname{conv} \bigcup_{i=1}^{k} P_{i} \subset \operatorname{conv} V$. Conversely, $V \subset \bigcup_{i=1}^{k} P_{i}$ and so conv $\bigcup_{i=1}^{k} P_{i}=\operatorname{conv} V$ which gives the desired result.
b). Each P_{i} is a bounded polyhedral set and so their intersection immediately inherits this property. It follows that the intersection is also a polytope (see Theorems 20.7 and 20.9).
c). If $\lambda \geqslant 0$ and $P=\operatorname{conv}\left(v_{1}, \ldots v_{t}\right)$ then $x \in \lambda P \Leftrightarrow$ there are the usual $\lambda_{1}, \ldots, \lambda_{t}$ such that $x=\lambda\left(\lambda_{1} v_{1}+\cdots+\lambda_{t} v_{t}\right) \Leftrightarrow x \in \operatorname{conv}\left(\lambda v_{1}, \ldots, \lambda v_{t}\right)$ and so λP is a polytope. Let $P=\operatorname{conv}\left(v_{1}, \ldots, v_{t}\right)$ and $Q=\operatorname{conv}\left(w_{1}, \ldots, w_{t}\right)$ be polytopes; we can assume the same number of v_{i} as w_{i} by repetition, if necessary. We have $x \in P+Q \Leftrightarrow$ there are the usual $\lambda_{1}, \ldots, \lambda_{t}$ and μ_{1}, \ldots, μ_{t} such that

$$
x=\lambda_{1} v_{1}+\cdots+\lambda_{t} v_{t}+\mu_{1} w_{1}+\cdots+\mu_{t} w_{t}=\sum_{i, j=1}^{t} \lambda_{i} \mu_{j}\left(v_{i}+w_{j}\right) .
$$

This is equivalent to $x \in \operatorname{conv}\left(v_{1}, \ldots, v_{t}, w_{1}, \ldots, w_{t}\right)$ and so $P+Q$ is a polytope. The required result now follows by induction.
2. Denote by $\{p, q\}$ the regular 3-polytope all of whose facets are p-gons and for which there are q facets at each vertex. Let P be a 4-polytope all of whose facets are congruent to $\{p, q\}$ and for which each edge lies on precisely r such facets. Prove that the numbers $f_{0}(P), f_{1}(P), f_{2}(P), f_{3}(P)$ are proportional (the same ratio in each case) to the numbers

$$
\frac{1}{q}+\frac{1}{r}-\frac{1}{2}, \quad \frac{1}{r}, \quad \frac{1}{p}, \quad \frac{1}{p}+\frac{1}{q}-\frac{1}{2}
$$

If ϕ is the angle between two faces of $\{p, q\}$ that meet at an edge, show that $r \phi<2 \pi$. Use the fact that

$$
\phi=2 \sin ^{-1}\left(\cos \frac{\pi}{q} / \sin \frac{\pi}{p}\right)
$$

to deduce that there at most six possibilites for the ordered triple $\{p, q, r\}$.
Let F, E, V be the numbers of faces, edges and vertices of $\{p, q\}$. Each 2-face of P lies on exactly 2 facets and therefore $2 f_{2}(P)=F f_{3}(P)$. We also have $E f_{3}(P)=$ $r f_{1}(P)$. Euler's formula gives

$$
f_{0}(P)=\left(\frac{E}{r}-\frac{F}{2}+1\right) f_{3}(P)
$$

Using the values of F, E, V in terms of p, q gives

$$
\frac{f_{0}(P)}{f_{1}(P)}=1+\frac{r}{q}-\frac{r}{2} \quad \frac{f_{0}(P)}{f_{2}(P)}=\frac{p}{r}+\frac{p}{q}-\frac{p}{2} \quad \frac{f_{3}(P)}{f_{2}(P)}=\frac{p}{q}-\frac{p}{2}+1
$$

This yields the desired result.
If e is an edge of P, we can choose a hypeplane H such that $H \cap P=e$. We let E be a hyperplane orthogonal to e which meets e. Then $H \cap E$ is a 2-dimensional plane in E. We let P_{1} be the polytope $E \cap P$ and note that $H \cap E$ supports P_{1} at the vertex $E \cap e$. Each facet of P, which contains e, intersects E to yield a facet of P_{1}. The angle between each pair of facets of P_{1} containing $e \cap E$ is ϕ. There are r of these facets and so $r \phi<2 \pi$.

We are told that $(\sin \phi / 2)(\sin \pi / p)=\cos \pi / q$, and so $\cos \pi / q<(\sin \pi / r)(\sin \pi / p)$. The only possible pairs for $\{p, q\}$ are $\{3,3\},\{3,4\},\{3,5\},\{4,3\},\{5,3\}$. This quickly leads to the following six possibilities for $\{p, q, r\}$,

$$
\{3,3,3\},\{3,3,4\},\{3,3,5\},\{3,4,3\},\{4,3,3\},\{5,3,3\} .
$$

3. Let $r B$ be a ball in \mathbb{E}^{2} which is circumscribed to a regular k-gon P. Find the smallest $\delta>1$ such that $P \subset r B \subset \delta P$.

Let θ denote the angle subtended by an edge of P at the center of the ball. Then $\theta=2 \pi / k$. Elementary trigonometry now shows that the distance from the midpoint of the edge to the center is $r \cos \pi / k$. This must be the radius of the insphere of P. It follows that $\delta=1 /(\cos \pi / k)$.
4. Let C be a cube in \mathbb{E}^{3} whose circumsphere is the unit ball B. Describe C^{*} as fully as you can. Prove that if S is an n-simplex with $o \in \operatorname{int} S$, then so is S^{*}.

If L is the edge length of the cube then we have $3 L^{2}=4$ (Pythagoras' theorem) and so $L=2 / \sqrt{3}$. It follows that $C=\bigcap_{i=1}^{3}\left\{x \in \mathbb{E}^{3}:\left|\left\langle x, e_{i}\right\rangle\right| \leqslant 1 / \sqrt{3}\right\}$. Consequently $C^{*}=\operatorname{conv}\left(\pm e_{1} \sqrt{3}, \pm e_{2} \sqrt{3}, \pm e_{3} \sqrt{3}\right)$. This is the regular octahedron with the indicated vertices.

Let v_{1}, \ldots, v_{n+1} be the (affinely independent) vertices of S. For $i=1, \ldots, n+$ 1, let H_{i} be the affine hull of this set of vertices with v_{i} removed. The affine independence shows that H_{i} is a hyperplane. Since $o \in \operatorname{int} S$ we can choose vectors w_{1}, \ldots, w_{n+1} such that $H_{i}=\left\{x \in \mathbb{E}^{3}:\left\langle x, w_{i}\right\rangle=1\right\}$ and $S=\bigcap_{i=1}^{n+1}\left\{x \in \mathbb{E}^{3}:\right.$ $\left.\left\langle x, w_{i}\right\rangle \leqslant 1\right\}$. It follows that $S^{*}=\operatorname{conv}\left(w_{1}, \ldots, w_{n+1}\right)$. This gives the desired result, since we already know from the boundedness of S that $o \in \operatorname{int} S^{*}$.
5. Let K be a non-empty set in \mathbb{E}^{n}. Prove that $K^{* *}=\operatorname{cl} \operatorname{conv}(K \cup\{o\})$.

We always have $K \subset K^{* *}$ and $K^{* *}$ is a closed convex set containing o. Thus $\mathrm{cl} \operatorname{conv}(K \cup\{o\}) \subset K^{* *}$. Furthermore $\mathrm{cl} \operatorname{conv}(K \cup\{o\})$ is a closed convex set containing K. It follows that $K^{* *} \subset(\operatorname{cl} \operatorname{conv}(K \cup\{o\}))^{* *}=\operatorname{cl} \operatorname{conv}(K \cup\{o\})$, as required.

