
CONVEXITY II SPRING 2000

TEST 1

In order to get full credit, all answers must be accompanied by
appropriate justifications.

1. Let K1, . . . ,K4 be convex bodies in En. Prove that

D(conv(K1 ∪K2), conv(K3 ∪K4)) 6 D(K1,K3) +D(K2,K4).

where D denotes the Hausdorff metric.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Choose ρ > 0 so that K1 ⊂ K3 + ρB and K2 ⊂ K4 + ρB. If z ∈ conv(K1 ∪K2)
there are x ∈ K1, y ∈ K2 and 0 6 λ 6 1 such that z = λx + (1 − λ)y (perhaps
this should be proved since it requires the convexity of K1, K2 and is not true in
general). If x ∈ K1 there is a v1 ∈ ρB and a k3 ∈ K3 such that x = k3 + v1.
If y ∈ K2 there is a v2 ∈ ρB and a k4 ∈ K4 such that y = k4 + v2. Now
z = λk3 + (1 − λ)k4 + λv1 + (1 − λ)v2 ∈ conv(K3 ∪ K4) + ρB. Consequently
conv(K1∪K2) ⊂ conv(K3∪K4)+ρB. Similarly, if K3 ⊂ K1+ρB and K4 ⊂ K2+ρB
we can deduce that conv(K3 ∪ K4) ⊂ conv(K1 ∪ K2) + ρB. The combination of
these two observations shows that

D(conv(K1 ∪K2), conv(K3 ∪K4)) 6 max{D(K1,K3), D(K2,K4)}
6 D(K1,K3) +D(K2,K4).

2. Assume that the convex bodies K1,K2, . . . , in En, converge to K with dimK = n.
Let p ∈ intK. For each i = 1, 2, . . . let αi = sup{α > 0 : α(Ki − p) + p ⊂ K} and
put Di = αi(Ki − p) + p. Prove that αi → 1 and Di → K as i→∞.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We may choose r > 0 so that 2rB + p ⊂ K and note that hK(u) > 〈p, u〉 + r for
all unit vectors u. Furthermore, we know that hKi → hK uniformly on the set of
unit vectors as i → ∞. It follows that we may assume hKi(u) > 〈p, u〉 + r for all
unit vectors u, or, equivalently, Ki ⊃ rB + p for all i. For convenience, we put
fi = hKi − 〈p, ·〉 for i = 1, 2, . . . and f = hK − 〈p, ·〉. Clearly, fi → f uniformly
on the set of all unit vectors as i → ∞, and f(u) > r, fi(u) > r for all i and all
unit vectors u. It follows that fi/f → 1 uniformly on the set of all unit vectors
as i → ∞. Note that αi = inf{f(u)/fi(u) : ‖u‖ = 1}. It follows that αi → 1 as
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i→∞. To finish, note that hDi = αifi + 〈p, ·〉 → f + 〈p, ·〉 = hK uniformly on the
set of unit vectors as i→∞. Thus Di → K as i→∞.

3. Let K,K1,K2, . . . be convex bodies in En. Prove that Ki → K as i → ∞ if and
only if the two following conditions are true:

a). each point of K is the limit of a sequence (xi)∞i=1 with xi ∈ Ki, for each
i = 1, 2, . . . ;

b). the limit of any convergent sequence (xij )
∞
j=1 with xij ∈ Kij , for each

j = 1, 2, . . . is in K.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
First, assume that Ki → K as i → ∞. Let x ∈ K and put xi = p(Ki, x) for
i = 1, 2, . . . . Then xi ∈ Ki and d(x, xi) = d({x},Ki) 6 D(K,Ki). Hence xi → x,
and so a) is true. If xij → x as j → ∞ and x /∈ K, there is an r > 0 such that
(rB + x) ∩ (K + rB) = ∅. This is impossible, since, if j is sufficiently large, then
d(xij , x) < r and xij ∈ Kij ⊂ K + rB.

Conversely, assume a) and b) both hold and let ε be given. We will show that

K ⊂ Ki + εB if i is sufficiently large (1)

Ki ⊂ K + εB if i is sufficiently large (2)

If (1) were false, there would be a sequence
(
xij
)∞
j=1

with xij ∈ K and d(xij ,Kij ) >
ε for each j. The compactness of K allows us to assume that xij → x ∈ K as
j → ∞. By a) there is a sequence yij ∈ Kij with yij → x as j → ∞. But then
d(xij , yij ) → 0 as j → ∞, which contradicts the fact that d(xij ,Kij ) > ε for each
j. So we have proved that (1) is true. If (2) were false there would be a sequence(
xij
)∞
j=1

with xij ∈ Kij and d(xij ,K) > ε for each j = 1, 2, . . . . We can use a) to
choose yij ∈ Kij ∩ (K + εB) for each j = 1, 2, . . . . The convexity of Kij therefore
allows us to assume that d(xij ,K) = ε for j = 1, 2, . . . and therefore that the
sequence converges. According to b) the limit must be in K, but this contradicts
the fact that d(xij ,K) = ε for j = 1, 2, . . . .

4. In E3, let L1 be the closed line segment joining the origin to the point (1, 0, 0), let
L2 be the closed line segment joining the origin to (0, 1, 0) and let L3 be the closed
line segment joining the origin to (1, 0, 1). Let P be the vector sum of these three
line segment. For ρ > 0 we put Pρ = P + ρB, where B is the closed unit ball in
E

3. Express the volume of Pρ as a polynomial in ρ.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
P is a paralleloptope with four edges parallel to each of the line segments L1, L2, L3.
If x ∈ Pρ there are four disjoint cases to consider. a). The volume of those x ∈ Pρ
for which x ∈ P is V (P ) = 1. b). The volume of those x ∈ Pρ for which x 6= p(P, x)
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and p(P, x) is a relative interior point of a facet of P is ρ times the surface area
of P (this was a homework question). There are four facets of area 1 and two of
area

√
2, so these points x have volume (4 + 2

√
2)ρ. c). We now consider those

points x ∈ Pρ for which x 6= p(P, x) and p(P, x) is a relative interior point of an
edge of P . There are four regions of such points x for which p(P, x) is in an edge
parallel to L1. These four regions can be translated to form a set whose volume is
that of a cylinder of radius ρ and length equal to the length of L1. Their volume is
therefore πρ2. Similarly, the volume of those points for which the nearest point is a
relative interior point of an edge parallel to L2, or L3 is πρ2 or πρ2

√
2, respectively.

d). Finally, we consider those points x ∈ Pρ for which x 6= p(P, x) and p(P, x) is a
vertex of P . The volume of such points x is the volume of a sphere of radius ρ and
is therfore 4πρ2/3. Putting these results together shows that the volume V (Pρ) of
Pρ is

V (Pρ) = 1 + (4 + 2
√

2)ρ+ (2 +
√

2)ρ2 +
4π
3
ρ3.


