TEST 1

In order to get full credit, all answers must be accompanied by appropriate justifications.

1. Let K_{1}, \ldots, K_{4} be convex bodies in \mathbb{E}^{n}. Prove that

$$
D\left(\operatorname{conv}\left(K_{1} \cup K_{2}\right), \operatorname{conv}\left(K_{3} \cup K_{4}\right)\right) \leqslant D\left(K_{1}, K_{3}\right)+D\left(K_{2}, K_{4}\right)
$$

where D denotes the Hausdorff metric.
Choose $\rho>0$ so that $K_{1} \subset K_{3}+\rho B$ and $K_{2} \subset K_{4}+\rho B$. If $z \in \operatorname{conv}\left(K_{1} \cup K_{2}\right)$ there are $x \in K_{1}, y \in K_{2}$ and $0 \leqslant \lambda \leqslant 1$ such that $z=\lambda x+(1-\lambda) y$ (perhaps this should be proved since it requires the convexity of K_{1}, K_{2} and is not true in general). If $x \in K_{1}$ there is a $v_{1} \in \rho B$ and a $k_{3} \in K_{3}$ such that $x=k_{3}+v_{1}$. If $y \in K_{2}$ there is a $v_{2} \in \rho B$ and a $k_{4} \in K_{4}$ such that $y=k_{4}+v_{2}$. Now $z=\lambda k_{3}+(1-\lambda) k_{4}+\lambda v_{1}+(1-\lambda) v_{2} \in \operatorname{conv}\left(K_{3} \cup K_{4}\right)+\rho B$. Consequently $\operatorname{conv}\left(K_{1} \cup K_{2}\right) \subset \operatorname{conv}\left(K_{3} \cup K_{4}\right)+\rho B$. Similarly, if $K_{3} \subset K_{1}+\rho B$ and $K_{4} \subset K_{2}+\rho B$ we can deduce that $\operatorname{conv}\left(K_{3} \cup K_{4}\right) \subset \operatorname{conv}\left(K_{1} \cup K_{2}\right)+\rho B$. The combination of these two observations shows that

$$
\begin{aligned}
D\left(\operatorname{conv}\left(K_{1} \cup K_{2}\right), \operatorname{conv}\left(K_{3} \cup K_{4}\right)\right) & \leqslant \max \left\{D\left(K_{1}, K_{3}\right), D\left(K_{2}, K_{4}\right)\right\} \\
& \leqslant D\left(K_{1}, K_{3}\right)+D\left(K_{2}, K_{4}\right) .
\end{aligned}
$$

2. Assume that the convex bodies K_{1}, K_{2}, \ldots, in \mathbb{E}^{n}, converge to K with $\operatorname{dim} K=n$. Let $p \in \operatorname{int} K$. For each $i=1,2, \ldots$ let $\alpha_{i}=\sup \left\{\alpha \geqslant 0: \alpha\left(K_{i}-p\right)+p \subset K\right\}$ and put $D_{i}=\alpha_{i}\left(K_{i}-p\right)+p$. Prove that $\alpha_{i} \rightarrow 1$ and $D_{i} \rightarrow K$ as $i \rightarrow \infty$.

We may choose $r>0$ so that $2 r B+p \subset K$ and note that $h_{K}(u)>\langle p, u\rangle+r$ for all unit vectors u. Furthermore, we know that $h_{K_{i}} \rightarrow h_{K}$ uniformly on the set of unit vectors as $i \rightarrow \infty$. It follows that we may assume $h_{K_{i}}(u)>\langle p, u\rangle+r$ for all unit vectors u, or, equivalently, $K_{i} \supset r B+p$ for all i. For convenience, we put $f_{i}=h_{K_{i}}-\langle p, \cdot\rangle$ for $i=1,2, \ldots$ and $f=h_{K}-\langle p, \cdot\rangle$. Clearly, $f_{i} \rightarrow f$ uniformly on the set of all unit vectors as $i \rightarrow \infty$, and $f(u)>r, f_{i}(u)>r$ for all i and all unit vectors u. It follows that $f_{i} / f \rightarrow 1$ uniformly on the set of all unit vectors as $i \rightarrow \infty$. Note that $\alpha_{i}=\inf \left\{f(u) / f_{i}(u):\|u\|=1\right\}$. It follows that $\alpha_{i} \rightarrow 1$ as
$i \rightarrow \infty$. To finish, note that $h_{D_{i}}=\alpha_{i} f_{i}+\langle p, \cdot\rangle \rightarrow f+\langle p, \cdot\rangle=h_{K}$ uniformly on the set of unit vectors as $i \rightarrow \infty$. Thus $D_{i} \rightarrow K$ as $i \rightarrow \infty$.
3. Let K, K_{1}, K_{2}, \ldots be convex bodies in \mathbb{E}^{n}. Prove that $K_{i} \rightarrow K$ as $i \rightarrow \infty$ if and only if the two following conditions are true:
a). each point of K is the limit of a sequence $\left(x_{i}\right)_{i=1}^{\infty}$ with $x_{i} \in K_{i}$, for each $i=1,2, \ldots$;
b). the limit of any convergent sequence $\left(x_{i_{j}}\right)_{j=1}^{\infty}$ with $x_{i_{j}} \in K_{i_{j}}$, for each $j=1,2, \ldots$ is in K.

First, assume that $K_{i} \rightarrow K$ as $i \rightarrow \infty$. Let $x \in K$ and put $x_{i}=p\left(K_{i}, x\right)$ for $i=1,2, \ldots$. Then $x_{i} \in K_{i}$ and $d\left(x, x_{i}\right)=d\left(\{x\}, K_{i}\right) \leqslant D\left(K, K_{i}\right)$. Hence $x_{i} \rightarrow x$, and so a) is true. If $x_{i_{j}} \rightarrow x$ as $j \rightarrow \infty$ and $x \notin K$, there is an $r>0$ such that $(r B+x) \cap(K+r B)=\emptyset$. This is impossible, since, if j is sufficiently large, then $d\left(x_{i_{j}}, x\right)<r$ and $x_{i_{j}} \in K_{i_{j}} \subset K+r B$.

Conversely, assume a) and b) both hold and let ϵ be given. We will show that

$$
\begin{array}{ll}
K \subset K_{i}+\epsilon B & \text { if } i \text { is sufficiently large } \\
K_{i} \subset K+\epsilon B & \text { if } i \text { is sufficiently large } \tag{2}
\end{array}
$$

If (1) were false, there would be a sequence $\left(x_{i_{j}}\right)_{j=1}^{\infty}$ with $x_{i_{j}} \in K$ and $d\left(x_{i_{j}}, K_{i_{j}}\right) \geqslant$ ϵ for each j. The compactness of K allows us to assume that $x_{i_{j}} \rightarrow x \in K$ as $j \rightarrow \infty$. By a) there is a sequence $y_{i_{j}} \in K_{i_{j}}$ with $y_{i_{j}} \rightarrow x$ as $j \rightarrow \infty$. But then $d\left(x_{i_{j}}, y_{i_{j}}\right) \rightarrow 0$ as $j \rightarrow \infty$, which contradicts the fact that $d\left(x_{i_{j}}, K_{i_{j}}\right) \geqslant \epsilon$ for each j. So we have proved that (1) is true. If (2) were false there would be a sequence $\left(x_{i_{j}}\right)_{j=1}^{\infty}$ with $x_{i_{j}} \in K_{i_{j}}$ and $d\left(x_{i_{j}}, K\right) \geqslant \epsilon$ for each $j=1,2, \ldots$ We can use a) to choose $y_{i_{j}} \in K_{i_{j}} \cap(K+\epsilon B)$ for each $j=1,2, \ldots$. The convexity of $K_{i_{j}}$ therefore allows us to assume that $d\left(x_{i_{j}}, K\right)=\epsilon$ for $j=1,2, \ldots$ and therefore that the sequence converges. According to \mathbf{b}) the limit must be in K, but this contradicts the fact that $d\left(x_{i_{j}}, K\right)=\epsilon$ for $j=1,2, \ldots$.
4. In \mathbb{E}^{3}, let L_{1} be the closed line segment joining the origin to the point $(1,0,0)$, let L_{2} be the closed line segment joining the origin to $(0,1,0)$ and let L_{3} be the closed line segment joining the origin to $(1,0,1)$. Let P be the vector sum of these three line segment. For $\rho \geqslant 0$ we put $P_{\rho}=P+\rho B$, where B is the closed unit ball in \mathbb{E}^{3}. Express the volume of P_{ρ} as a polynomial in ρ.
P is a paralleloptope with four edges parallel to each of the line segments L_{1}, L_{2}, L_{3}. If $x \in P_{\rho}$ there are four disjoint cases to consider. a). The volume of those $x \in P_{\rho}$ for which $x \in P$ is $V(P)=1 \mathbf{l} \mathbf{b})$. The volume of those $x \in P_{\rho}$ for which $x \neq p(P, x)$
and $p(P, x)$ is a relative interior point of a facet of P is ρ times the surface area of P (this was a homework question). There are four facets of area 1 and two of area $\sqrt{2}$, so these points x have volume $(4+2 \sqrt{2}) \rho$. c). We now consider those points $x \in P_{\rho}$ for which $x \neq p(P, x)$ and $p(P, x)$ is a relative interior point of an edge of P. There are four regions of such points x for which $p(P, x)$ is in an edge parallel to L_{1}. These four regions can be translated to form a set whose volume is that of a cylinder of radius ρ and length equal to the length of L_{1}. Their volume is therefore $\pi \rho^{2}$. Similarly, the volume of those points for which the nearest point is a relative interior point of an edge parallel to L_{2}, or L_{3} is $\pi \rho^{2}$ or $\pi \rho^{2} \sqrt{2}$, respectively. d). Finally, we consider those points $x \in P_{\rho}$ for which $x \neq p(P, x)$ and $p(P, x)$ is a vertex of P. The volume of such points x is the volume of a sphere of radius ρ and is therfore $4 \pi \rho^{2} / 3$. Putting these results together shows that the volume $V\left(P_{\rho}\right)$ of P_{ρ} is

$$
V\left(P_{\rho}\right)=1+(4+2 \sqrt{2}) \rho+(2+\sqrt{2}) \rho^{2}+\frac{4 \pi}{3} \rho^{3}
$$

