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HOMEWORK 4 – ANSWERS

1. Let Q be an (n − 1)-polytope in En with o ∈ relintQ and let P be the bipyramid
over Q defined by P = conv(I ∪ Q) where I is the line segment joining ±en, the
unit vectors orthogonal to affQ. Describe the polar body P ∗.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We assume that affQ = E

n−1 and denote by Q∗ the polar of Q in En−1. We know
from Theorem 21.7 that the vertices of P are precisley those of Q together with
±en. It follows that

P ∗ = {y ∈ En : 〈y, en〉 6 1}∩{y ∈ En : 〈y, en〉 > −1}∩
⋂
v

vertex of Q

{y ∈ En : 〈y, v〉 6 1}.

We also know that

Q∗ =
⋂
v

vertex of Q

{y ∈ En−1 : 〈y, v〉 6 1}

It follows that P ∗ = Q∗ + I is a prism over Q∗.

2. A 3-polytope is said to be simple if there are precisely three edges containing each
vertex. Let P be a simple 3-polytope and let pn denote the number of facets of P
which are n-gons (n = 3, 4, . . . ). Prove that∑

n>3

(6− n)pn = 12.

Use similar techniques to show that all 3-polytopes (not just those that are simple)
must have at least one n-gonal facet with n 6 5.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We denote by V, E, F the number of vertices, edges and facets of the 3-polytope
P . For a simple polytope P , we have∑

n>3

pn = F,
∑
n>3

npn = 2E = 3V.

Euler’s formula yields 6V − 6E + 6F = 12 which gives∑
n>3

(2n− 3n+ 6)pn = F which is
∑
n>3

(6− n)pn = 12,
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as required. For an arbitrary 3-polytope, we have∑
n>3

pn = F,
∑
n>3

npn = 2E,
∑
n>3

npn > 3V,

since each vertex lies on at least three facets. The above reasoning then gives∑
n>3

(6− n)pn > 12 which is 3p3 + 2p4 + p5 > 12 +
∑
n>7

(n− 6)pn.

It is clear that the right side is positive and so at least one of p3, p4, p5 must be
positive, as required.

3. Lay, Question 23.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We have Q ⊂ K and so K∗ ⊂ Q∗. For the reverse inclusion, let x ∈ Q∗ and k ∈ K.
There are non-negative numbers λ1, . . . , λn+1 and points q1, . . . , qn+1 ∈ Q such that

k = λ1q1 + · · ·+ λn+1qn+1 and λ1 + · · ·+ λn+1 = 1.

It follows that

〈x, k〉 = λ1〈x, q1〉+ · · ·+ λn+1〈x, qn+1〉 6 λ1 + · · ·+ λn+1 = 1,

and so x ∈ K∗, as required.

4. Lay, Question 23.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a). We know from Theorem 23.3(b) that K∗ is closed convex and contains the
origin. Consequently Theorem 23.5 gives K∗∗∗ = K∗.

b). First, we note from (the proof of) Theorem 23.5 that K ⊂ K∗∗ for all sets
K. Next, if K is bounded we can choose R > 0 so that K ⊂ RB in which
case (1/R)B ⊂ K∗ which implies o ∈ intK∗. Conversely, if o ∈ intK∗, we
can find an r > 0 such that rB ⊂ K∗ in which case our previous observation
gives K ⊂ K∗∗ ⊂ (1/r)B, as required.

c). Let x ∈ K∗ and y ∈ convK, there are non-negative numbers λ1, . . . , λn+1

and points k1, . . . , kn+1 ∈ K such that

y = λ1k1 + · · ·+ λn+1kn+1 and λ1 + · · ·+ λn+1 = 1.

It follows that

〈x, y〉 = λ1〈x, k1〉+ · · ·+ λn+1〈x, kn+1〉 6 λ1 + · · ·+ λn+1 = 1,
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and so x ∈ (convK)∗. Thus K∗ ⊂ (convK)∗ for all K. Now assume
that o ∈ int convK. We can find r > 0 such that rB ⊂ convK and so
K∗ ⊂ (convK)∗ ⊂ (1/r)B, and therefore K∗ is bounded.

For the reverse implication, assume o /∈ int convK. It follows from Theo-
rem 4.5 that there is a hyperplane through o which does not meet int convK.
So we can choose v ∈ En such that 〈v, k〉 < 0 for all k ∈ int convK. It fol-
lows from Theorem 2.9 that 〈v, k〉 6 0 for all k ∈ convK and so 〈v, k〉 6 0
for all k ∈ K. Furthermore 〈αv, k〉 6 0 for all α > 0 and all k ∈ K. Thus
αv ∈ K∗ for all α > 0 and so K∗ is unbounded.

e). The proof of Theorem 23.11 showed that P ∗ = Q where Q is a polyhedral
set. This part of the proof did not make use of the fact that P was n-
dimensional nor that o ∈ intP , and so provides an answer to this question.

5. Lay, Question 23.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
First, let x ∈

⋃
αK

∗
α. We have 〈x, k〉 6 1 for all k ∈

⋂
αKα and so

⋃
αK

∗
α ⊂(⋂

αKα

)∗
. However,

(⋂
αKα

)∗
is closed and convex, so cl conv

⋃
αK

∗
α ⊂

(⋂
αKα

)∗
.

For the reverse inclusion, assume x /∈ cl conv
⋃
αK

∗
α. It follows from Theorem 4.9

that there is a v ∈ En such that 〈x, v〉 > 1 and 〈k, v〉 < 1 for all k ∈ cl conv
⋃
αK

∗
α

and therefore for all k ∈
⋃
αK

∗
α. Consequently, v ∈

(⋃
αK

∗
α

)∗
=
⋂
αK

∗∗
α =⋂

αKα. It now follows that x /∈
(⋂

αKα

)∗
and thus

cl conv
⋃
α

K∗α =

(⋂
α

Kα

)∗
.


