CONVEXITY 2 SPRING 2000 HOMEWORK 4 – ANSWERS

1. Let Q be an (n-1)-polytope in \mathbb{E}^n with $o \in \operatorname{relint} Q$ and let P be the bipyramid over Q defined by $P = \operatorname{conv}(I \cup Q)$ where I is the line segment joining $\pm e_n$, the unit vectors orthogonal to affQ. Describe the polar body P^* .

We assume that $\operatorname{aff} Q = \mathbb{E}^{n-1}$ and denote by Q^* the polar of Q in \mathbb{E}^{n-1} . We know from Theorem 21.7 that the vertices of P are precisely those of Q together with $\pm e_n$. It follows that

$$P^* = \{ y \in \mathbb{E}^n : \langle y, e_n \rangle \leqslant 1 \} \cap \{ y \in \mathbb{E}^n : \langle y, e_n \rangle \geqslant -1 \} \cap \bigcap_{\substack{v \text{ vertex of } Q}} \{ y \in \mathbb{E}^n : \langle y, v \rangle \leqslant 1 \}.$$

We also know that

$$Q^* = \bigcap_{\substack{v \\ \text{vertex of } Q}} \{ y \in \mathbb{E}^{n-1} : \langle y, v \rangle \leqslant 1 \}$$

It follows that $P^* = Q^* + I$ is a prism over Q^* .

2. A 3-polytope is said to be simple if there are precisely three edges containing each vertex. Let P be a simple 3-polytope and let p_n denote the number of facets of P which are n-gons (n = 3, 4, ...). Prove that

$$\sum_{n \ge 3} (6-n)p_n = 12.$$

Use similar techniques to show that all 3-polytopes (not just those that are simple) must have at least one *n*-gonal facet with $n \leq 5$.

We denote by V, E, F the number of vertices, edges and facets of the 3-polytope P. For a simple polytope P, we have

$$\sum_{n \ge 3} p_n = F, \qquad \sum_{n \ge 3} n p_n = 2E = 3V.$$

Euler's formula yields 6V - 6E + 6F = 12 which gives

$$\sum_{n \ge 3} (2n - 3n + 6)p_n = F \quad \text{which is} \quad \sum_{n \ge 3} (6 - n)p_n = 12,$$

as required. For an arbitrary 3-polytope, we have

$$\sum_{n \ge 3} p_n = F, \qquad \sum_{n \ge 3} n p_n = 2E, \qquad \sum_{n \ge 3} n p_n \ge 3V,$$

since each vertex lies on at least three facets. The above reasoning then gives

$$\sum_{n \ge 3} (6-n)p_n \ge 12 \quad \text{which is} \quad 3p_3 + 2p_4 + p_5 \ge 12 + \sum_{n \ge 7} (n-6)p_n.$$

It is clear that the right side is positive and so at least one of p_3 , p_4 , p_5 must be positive, as required.

3. Lay, Question 23.3

We have $Q \subset K$ and so $K^* \subset Q^*$. For the reverse inclusion, let $x \in Q^*$ and $k \in K$. There are non-negative numbers $\lambda_1, \ldots, \lambda_{n+1}$ and points $q_1, \ldots, q_{n+1} \in Q$ such that

$$k = \lambda_1 q_1 + \dots + \lambda_{n+1} q_{n+1}$$
 and $\lambda_1 + \dots + \lambda_{n+1} = 1$.

It follows that

$$\langle x,k\rangle = \lambda_1 \langle x,q_1\rangle + \dots + \lambda_{n+1} \langle x,q_{n+1}\rangle \leqslant \lambda_1 + \dots + \lambda_{n+1} = 1,$$

and so $x \in K^*$, as required.

4. Lay, Question 23.5

- a). We know from Theorem 23.3(b) that K^* is closed convex and contains the
 - a). We know from Theorem 25.5(b) that K^{-15} closed convex and contains the origin. Consequently Theorem 23.5 gives $K^{***} = K^*$.
 - **b).** First, we note from (the proof of) Theorem 23.5 that $K \subset K^{**}$ for all sets K. Next, if K is bounded we can choose R > 0 so that $K \subset RB$ in which case $(1/R)B \subset K^*$ which implies $o \in \operatorname{int} K^*$. Conversely, if $o \in \operatorname{int} K^*$, we can find an r > 0 such that $rB \subset K^*$ in which case our previous observation gives $K \subset K^{**} \subset (1/r)B$, as required.
 - c). Let $x \in K^*$ and $y \in \operatorname{conv} K$, there are non-negative numbers $\lambda_1, \ldots, \lambda_{n+1}$ and points $k_1, \ldots, k_{n+1} \in K$ such that

$$y = \lambda_1 k_1 + \dots + \lambda_{n+1} k_{n+1}$$
 and $\lambda_1 + \dots + \lambda_{n+1} = 1$.

It follows that

$$\langle x, y \rangle = \lambda_1 \langle x, k_1 \rangle + \dots + \lambda_{n+1} \langle x, k_{n+1} \rangle \leqslant \lambda_1 + \dots + \lambda_{n+1} = 1,$$

and so $x \in (\operatorname{conv} K)^*$. Thus $K^* \subset (\operatorname{conv} K)^*$ for all K. Now assume that $o \in \operatorname{int} \operatorname{conv} K$. We can find r > 0 such that $rB \subset \operatorname{conv} K$ and so $K^* \subset (\operatorname{conv} K)^* \subset (1/r)B$, and therefore K^* is bounded.

For the reverse implication, assume $o \notin \operatorname{int} \operatorname{conv} K$. It follows from Theorem 4.5 that there is a hyperplane through o which does not meet int $\operatorname{conv} K$. So we can choose $v \in \mathbb{E}^n$ such that $\langle v, k \rangle < 0$ for all $k \in \operatorname{int} \operatorname{conv} K$. It follows from Theorem 2.9 that $\langle v, k \rangle \leq 0$ for all $k \in \operatorname{conv} K$ and so $\langle v, k \rangle \leq 0$ for all $k \in K$. Furthermore $\langle \alpha v, k \rangle \leq 0$ for all $\alpha > 0$ and all $k \in K$. Thus $\alpha v \in K^*$ for all $\alpha > 0$ and so K^* is unbounded.

e). The proof of Theorem 23.11 showed that $P^* = Q$ where Q is a polyhedral set. This part of the proof did not make use of the fact that P was n-dimensional nor that $o \in intP$, and so provides an answer to this question.

5. Lay, Question 23.7

First, let $x \in \bigcup_{\alpha} K_{\alpha}^{*}$. We have $\langle x, k \rangle \leq 1$ for all $k \in \bigcap_{\alpha} K_{\alpha}$ and so $\bigcup_{\alpha} K_{\alpha}^{*} \subset (\bigcap_{\alpha} K_{\alpha})^{*}$. However, $(\bigcap_{\alpha} K_{\alpha})^{*}$ is closed and convex, so $\operatorname{cl}\operatorname{conv}\bigcup_{\alpha} K_{\alpha}^{*} \subset (\bigcap_{\alpha} K_{\alpha})^{*}$. For the reverse inclusion, assume $x \notin \operatorname{cl}\operatorname{conv}\bigcup_{\alpha} K_{\alpha}^{*}$. It follows from Theorem 4.9 that there is a $v \in \mathbb{E}^{n}$ such that $\langle x, v \rangle > 1$ and $\langle k, v \rangle < 1$ for all $k \in \operatorname{cl}\operatorname{conv}\bigcup_{\alpha} K_{\alpha}^{*}$ and therefore for all $k \in \bigcup_{\alpha} K_{\alpha}^{*}$. Consequently, $v \in (\bigcup_{\alpha} K_{\alpha}^{*})^{*} = \bigcap_{\alpha} K_{\alpha}^{**} = \bigcap_{\alpha} K_{\alpha}$. It now follows that $x \notin (\bigcap_{\alpha} K_{\alpha})^{*}$ and thus

$$\operatorname{cl}\operatorname{conv}\bigcup_{\alpha}K_{\alpha}^{*}=\left(\bigcap_{\alpha}K_{\alpha}\right)^{*}.$$