1. Let Q be an $(n-1)$-polytope in \mathbb{E}^{n} with $o \in \operatorname{relint} Q$ and let P be the bipyramid over Q defined by $P=\operatorname{conv}(I \cup Q)$ where I is the line segment joining $\pm e_{n}$, the unit vectors orthogonal to aff Q. Describe the polar body P^{*}.

We assume that aff $Q=\mathbb{E}^{n-1}$ and denote by Q^{*} the polar of Q in \mathbb{E}^{n-1}. We know from Theorem 21.7 that the vertices of P are precisley those of Q together with $\pm e_{n}$. It follows that
$P^{*}=\left\{y \in \mathbb{E}^{n}:\left\langle y, e_{n}\right\rangle \leqslant 1\right\} \cap\left\{y \in \mathbb{E}^{n}:\left\langle y, e_{n}\right\rangle \geqslant-1\right\} \cap \bigcap_{v}^{v} \begin{gathered}\text { vertex of } Q\end{gathered}\left\{y \in \mathbb{E}^{n}:\langle y, v\rangle \leqslant 1\right\}$.
We also know that

$$
Q^{*}=\bigcap_{\substack{v \\ \text { vertex of } Q}}\left\{y \in \mathbb{E}^{n-1}:\langle y, v\rangle \leqslant 1\right\}
$$

It follows that $P^{*}=Q^{*}+I$ is a prism over Q^{*}.
2. A 3-polytope is said to be simple if there are precisely three edges containing each vertex. Let P be a simple 3 -polytope and let p_{n} denote the number of facets of P which are n-gons $(n=3,4, \ldots)$. Prove that

$$
\sum_{n \geqslant 3}(6-n) p_{n}=12
$$

Use similar techniques to show that all 3-polytopes (not just those that are simple) must have at least one n-gonal facet with $n \leqslant 5$.

We denote by V, E, F the number of vertices, edges and facets of the 3-polytope P. For a simple polytope P, we have

$$
\sum_{n \geqslant 3} p_{n}=F, \quad \sum_{n \geqslant 3} n p_{n}=2 E=3 V .
$$

Euler's formula yields $6 V-6 E+6 F=12$ which gives

$$
\sum_{n \geqslant 3}(2 n-3 n+6) p_{n}=F \quad \text { which is } \quad \sum_{n \geqslant 3}(6-n) p_{n}=12
$$

as required. For an arbitrary 3-polytope, we have

$$
\sum_{n \geqslant 3} p_{n}=F, \quad \sum_{n \geqslant 3} n p_{n}=2 E, \quad \sum_{n \geqslant 3} n p_{n} \geqslant 3 V,
$$

since each vertex lies on at least three facets. The above reasoning then gives

$$
\sum_{n \geqslant 3}(6-n) p_{n} \geqslant 12 \quad \text { which is } \quad 3 p_{3}+2 p_{4}+p_{5} \geqslant 12+\sum_{n \geqslant 7}(n-6) p_{n}
$$

It is clear that the right side is positive and so at least one of p_{3}, p_{4}, p_{5} must be positive, as required.
3. Lay, Question 23.3

We have $Q \subset K$ and so $K^{*} \subset Q^{*}$. For the reverse inclusion, let $x \in Q^{*}$ and $k \in K$. There are non-negative numbers $\lambda_{1}, \ldots, \lambda_{n+1}$ and points $q_{1}, \ldots, q_{n+1} \in Q$ such that

$$
k=\lambda_{1} q_{1}+\cdots+\lambda_{n+1} q_{n+1} \quad \text { and } \quad \lambda_{1}+\cdots+\lambda_{n+1}=1
$$

It follows that

$$
\langle x, k\rangle=\lambda_{1}\left\langle x, q_{1}\right\rangle+\cdots+\lambda_{n+1}\left\langle x, q_{n+1}\right\rangle \leqslant \lambda_{1}+\cdots+\lambda_{n+1}=1,
$$

and so $x \in K^{*}$, as required.
4. Lay, Question 23.5
a). We know from Theorem 23.3(b) that K^{*} is closed convex and contains the origin. Consequently Theorem 23.5 gives $K^{* * *}=K^{*}$.
b). First, we note from (the proof of) Theorem 23.5 that $K \subset K^{* *}$ for all sets K. Next, if K is bounded we can choose $R>0$ so that $K \subset R B$ in which case $(1 / R) B \subset K^{*}$ which implies $o \in \operatorname{int} K^{*}$. Conversely, if $o \in \operatorname{int} K^{*}$, we can find an $r>0$ such that $r B \subset K^{*}$ in which case our previous observation gives $K \subset K^{* *} \subset(1 / r) B$, as required.
c). Let $x \in K^{*}$ and $y \in \operatorname{conv} K$, there are non-negative numbers $\lambda_{1}, \ldots, \lambda_{n+1}$ and points $k_{1}, \ldots, k_{n+1} \in K$ such that

$$
y=\lambda_{1} k_{1}+\cdots+\lambda_{n+1} k_{n+1} \quad \text { and } \quad \lambda_{1}+\cdots+\lambda_{n+1}=1 .
$$

It follows that

$$
\langle x, y\rangle=\lambda_{1}\left\langle x, k_{1}\right\rangle+\cdots+\lambda_{n+1}\left\langle x, k_{n+1}\right\rangle \leqslant \lambda_{1}+\cdots+\lambda_{n+1}=1,
$$

and so $x \in(\operatorname{conv} K)^{*}$. Thus $K^{*} \subset(\operatorname{conv} K)^{*}$ for all K. Now assume that $o \in \operatorname{int} \operatorname{conv} K$. We can find $r>0$ such that $r B \subset \operatorname{conv} K$ and so $K^{*} \subset(\operatorname{conv} K)^{*} \subset(1 / r) B$, and therefore K^{*} is bounded.

For the reverse implication, assume $o \notin \operatorname{int} \operatorname{conv} K$. It follows from Theorem 4.5 that there is a hyperplane through o which does not meet int conv K. So we can choose $v \in \mathbb{E}^{n}$ such that $\langle v, k\rangle<0$ for all $k \in \operatorname{int} \operatorname{conv} K$. It follows from Theorem 2.9 that $\langle v, k\rangle \leqslant 0$ for all $k \in \operatorname{conv} K$ and so $\langle v, k\rangle \leqslant 0$ for all $k \in K$. Furthermore $\langle\alpha v, k\rangle \leqslant 0$ for all $\alpha>0$ and all $k \in K$. Thus $\alpha v \in K^{*}$ for all $\alpha>0$ and so K^{*} is unbounded.
e). The proof of Theorem 23.11 showed that $P^{*}=Q$ where Q is a polyhedral set. This part of the proof did not make use of the fact that P was n dimensional nor that $o \in \operatorname{int} P$, and so provides an answer to this question.
5. Lay, Question 23.7

First, let $x \in \bigcup_{\alpha} K_{\alpha}^{*}$. We have $\langle x, k\rangle \leqslant 1$ for all $k \in \bigcap_{\alpha} K_{\alpha}$ and so $\bigcup_{\alpha} K_{\alpha}^{*} \subset$ $\left(\bigcap_{\alpha} K_{\alpha}\right)^{*}$. However, $\left(\bigcap_{\alpha} K_{\alpha}\right)^{*}$ is closed and convex, so cl conv $\bigcup_{\alpha} K_{\alpha}^{*} \subset\left(\bigcap_{\alpha} K_{\alpha}\right)^{*}$. For the reverse inclusion, assume $x \notin \mathrm{cl}$ conv $\bigcup_{\alpha} K_{\alpha}^{*}$. It follows from Theorem 4.9 that there is a $v \in \mathbb{E}^{n}$ such that $\langle x, v\rangle>1$ and $\langle k, v\rangle<1$ for all $k \in \mathrm{cl} \operatorname{conv} \bigcup_{\alpha} K_{\alpha}^{*}$ and therefore for all $k \in \bigcup_{\alpha} K_{\alpha}^{*}$. Consequently, $v \in\left(\bigcup_{\alpha} K_{\alpha}^{*}\right)^{*}=\bigcap_{\alpha} K_{\alpha}^{* *}=$ $\bigcap_{\alpha} K_{\alpha}$. It now follows that $x \notin\left(\bigcap_{\alpha} K_{\alpha}\right)^{*}$ and thus

$$
\mathrm{cl} \operatorname{conv} \bigcup_{\alpha} K_{\alpha}^{*}=\left(\bigcap_{\alpha} K_{\alpha}\right)^{*} .
$$

