CONVEXITY 2 SPRING 2000 HOMEWORK 4

- **1.** Let Q be an (n-1)-polytope in \mathbb{E}^n with $o \in \operatorname{relint} Q$ and let P be the bipyramid over Q defined by $P = \operatorname{conv}(I \cup Q)$ where I is the line segment joining $\pm e_n$, the unit vectors orthogonal to aff Q. Describe the polar body P^* .
- **2.** A 3-polytope is said to be simple if there are precisely three edges containing each vertex. Let P be a simple 3-polytope and let p_n denote the number of facets of P which are n-gons (n = 3, 4, ...). Prove that

$$\sum_{n \ge 3} (6-n)p_n = 12.$$

Use similar techniques to show that all 3-polytopes (not just those that are simple) must have at least one *n*-gonal facet with $n \leq 5$.

- **3.** Lay, Question 23.3
- 4. Lay, Question 23.5
- 5. Lay, Question 23.7