1. Let Q be an $(n-1)$-polytope in \mathbb{E}^{n} with $o \in \operatorname{relint} Q$ and let P be the bipyramid over Q defined by $P=\operatorname{conv}(I \cup Q)$ where I is the line segment joining $\pm e_{n}$, the unit vectors orthogonal to aff Q. Describe the polar body P^{*}.
2. A 3-polytope is said to be simple if there are precisley three edges containing each vertex. Let P be a simple 3-polytope and let p_{n} denote the number of facets of P which are n-gons ($n=3,4, \ldots$). Prove that

$$
\sum_{n \geqslant 3}(6-n) p_{n}=12 .
$$

Use similar techniques to show that all 3 -polytopes (not just those that are simple) must have at least one n-gonal facet with $n \leqslant 5$.
3. Lay, Question 23.3
4. Lay, Question 23.5
5. Lay, Question 23.7

