1. Lay, Question 20.1
a) A vertex is, by definition, an exposed point. The result then follows from the comments following Theorem 5.8
b) Let I be the segment $[0,1]$ and B be the unit ball, both in \mathbb{E}^{2}. Then the point $(1,1)$ is extreme but not a vertex of $I+B$.
2. Lay, Question 20.2

Note that, if H^{+}is a closed half space in \mathbb{E}^{n} then $L \cap H^{+}$is either L or a closed half space in L. We assume P is a polytope and that $L \cap P \neq \emptyset$. Then P is a bounded polyhedral set and so there are closed half spaces $H_{1}^{+}, \ldots, H_{k}^{+}$such that $P=\bigcap_{i=1}^{k} H_{i}^{+}$. Consequently $P \cap L=\bigcap_{i=1}^{k}\left(H_{i}^{+} \cap L\right)$. If $\mathcal{S}=\{i: 1 \leqslant i \leqslant$ $\left.k, H_{i}^{+} \cap L \neq L\right\}$. Then

$$
P \cap L=\bigcap_{i \in \mathcal{S}}\left(H_{i}^{+} \cap L\right)
$$

is a bounded polyhedral set in L, and therefore a polytope.
3. Lay, Question 20.8
(10 points)
a) If we put $f_{124}(x, y, z)=\alpha x+\beta y+\gamma z$, we see that $3 \alpha=0, \alpha+\beta+3 \gamma=$ $0,3 \beta>0$. It follows that $\alpha=0, \beta=3, \gamma=-1$ and so $f_{124}(x, y, z)=3 y-z$. Similar calculations give $f_{134}(x, y, z)=3 x-z$ and $f_{123}(x, y, z)=z$.
b) Note that $f_{14}(x, y, z)=3 x+3 y-2 z$. Also $f_{14}\left(a_{1}\right)=f_{14}\left(a_{4}\right)=0, f_{14}\left(a_{2}\right)=$ $f_{14}\left(a_{3}\right)>0$ which gives the required result.
4. Let X^{4} be a four dimensional cross polytope.
a) How many vertices does X^{4} have?
b) How many facets does X^{4} have? Describe the nature of these facets.
(10 points)
a) Let x_{1}, \ldots, x_{4} be linearly independent vectors with $X^{4}=\operatorname{conv}\left(\pm x_{1}, \ldots, \pm x_{4}\right)$. Let H be the subspace spanned by x_{1}, x_{2}, x_{3}. Then H is a hyperplane and we denote by v a normal vector with $\left\langle v, x_{4}\right\rangle>0$. If $x \in X^{4}$ there are non-negative numbers $\lambda_{1}, \ldots, \lambda_{4}, \mu_{1}, \ldots, \mu_{4}$ such that

$$
x=\sum_{i=1}^{4}\left(\lambda_{i}-\mu_{i}\right) x_{i} \quad \text { and } \quad \sum_{i=1}^{4}\left(\lambda_{i}+\mu_{i}\right)=1 .
$$

It follows that

$$
\langle x, v\rangle=\left\langle\sum_{i=1}^{4}\left(\lambda_{i}-\mu_{i}\right) x_{i}, v\right\rangle=\left(\lambda_{4}-\mu_{4}\right)\left\langle x_{4}, v\right\rangle \leqslant\left\langle x_{4}, v\right\rangle
$$

with equality if and only if $x=x_{4}$ that is $\lambda_{4}=1$ and all other λ 's and μ 's are zero. We deduce that x_{4} is a vertex, in fact all the points $\pm x_{1}, \ldots, \pm x_{4}$ are vertices. The definition of X^{4} then shows that these are precisely all the vertices and so there are eight.
b) The facets of X^{4} are convex hulls of the facets of X^{3} with either of $\pm x_{4}$. Therefore there are twice as many facets of X^{4} as there are of X^{3}. This argument could be repeated to show that the total number of facets is sixteen. In addition, if the facets of X^{3} were 2 -simplices then the facets of X^{4} are 3 -simplices. An analogous argument shows that the facets of X^{3} are indeed 2 -simplices and so we are finished.
5. Let M be the moment curve in \mathbb{E}^{4}, that is $M=\left\{\left(t, t^{2}, t^{3}, t^{4}\right) \in \mathbb{E}^{4}: t \in \mathbb{R}\right\}$. Let V be any finite subset of M and put $P=\operatorname{conv} V$. Show that, if W is a subset of V comprising exactly four(distinct) points, then W is affinely independent. Deduce that every facet of P is a tetrahedron. Prove that every two points of V are vertices of P which are joined by an edge of P. Polytopes with this property are
said to be neighbourly. Not that, in dimension 3, the only neighbourly polytopes are tetrahedra.

If there were four affinely dependnt points on M there would be numbers x, y, z, w not all zero and numbers a, b, c, d such that

$$
\begin{aligned}
x+y+z+w & =0 \\
a x+b y+c z+d w & =0 \\
a^{2} x+b^{2} y+c^{2} z+d^{2} w & =0 \\
a^{3} x+b^{3} y+c^{3} z+d^{3} w & =0 \\
a^{4} x+b^{4} y+c^{4} z+d^{4} w & =0
\end{aligned}
$$

The first four of these equations have determinant

$$
\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
a & b & c & d \\
a^{2} & b^{2} & c^{2} & d^{2} \\
a^{3} & b^{3} & c^{3} & d^{3}
\end{array}\right| .
$$

This is a Vandermonde determinant and equals $(a-b)(a-c)(a-d)(b-c)(b-d)(c-d)$. We are assuming that the a, b, c, d are all distinct and so the only solution of the first four equations is $x=y=z=w=0$. Thus the points are affinely indepependent. More or less the same argument shows that any five points on the moment curve are affinely independent (which is what I meant to ask you). If F is a facet of P then there is a support hyperplane H such that $P \cap H=F$. Note that any hyperplane can only meet the moment curve in at most four points since a polynomial of degree four has at most four real roots. Clearly our support plane H meets M in exactly four points. These are necessarily affinely independent and therefore form the vertices of a tetrahedron, as required. Let $\mathbf{v}=\left(v, v^{2}, v^{3}, v^{4}\right), \mathbf{w}=\left(w, w^{2}, w^{3}, w^{4}\right) \in V$ and assume that $v<w$. Now choose $\mathbf{p}=\left(p, p^{2}, p^{3}, p^{4}\right), \mathbf{q}=\left(q, q^{2}, q^{3}, q^{4}\right) \in M$ so that there are no points $\left(t, t^{2}, t^{3}, t^{4}\right) \in V$ with $v<t \leqslant p$ or with $q \leqslant t<w$. Let H be the hyperplane through $\mathbf{p}, \mathbf{q}, \mathbf{v}, \mathbf{w}$. The moment curve crosses H precisely at the points $\mathbf{p}, \mathbf{q}, \mathbf{v}, \mathbf{w}$. There are no points of V on M between \mathbf{v} and \mathbf{p} nor are there any between \mathbf{q} and \mathbf{w}. Thus all points of V except \mathbf{v}, w lie strictly on one side of H. It follows that \mathbf{v}, \mathbf{w} are the end points of an edge of P, as required.

