
Section 4. Separating Hyperplanes

If f is a linear functional on E
n and A is a subset of En , we write f(A) � � if f(x) � �

for all x 2 A; similar notation is used for the other inequalities.
The hyperplane [f : �] separates the sets A and B if either

i) f(A) � � and f(B) � �; or
ii) f(A) � � and f(B) � �.

The hyperplane [f : �] strictly separates the sets A and B if either

i) f(A) > � and f(B) < �; or
ii) f(A) < � and f(B) > �.

If A andB are externally tangent closed circular discs in the plane then they are separated
by their common tangent line but not strictly separated.

Lemma 4.4. Let S be an open convex subset of E2 . If x 2 E
2 n S, then there is a line L

containing x such that L \ S = �.

Proof. Choose a coordinate system with x at the origin. Put

T = fu 2 E
2 : kuk = 1 and x+ �u 2 S; for some � > 0g:

The openness of S shows that if u 2 T there is a � > 0 such that, if kvk = 1 and ku� vk < �,
then v 2 T . The convexity of S shows that if u; v 2 T , then the shorter of the two arcs of
the unit circle joining u and v is also contained in T . [Notice that if u and �u are both in T
then x 2 S]. It follows that T is an open subarc of the unit circle. The total angle that this
arc subtends at the origin is at most �; since x =2 S. The line L through x and an endpoint
of this arc satis�es the theorem. �

Theorem 4.5. Let F be a k-dimensional at and S an open convex subset of En such that

F \ S = �. If 0 � k � n � 2, there is a at F � of dimension k + 1 such that F � � F and

F � \ S = �.

Proof. Let V be the subspace of En orthogonal to F . Then dimV � 2. Let � : En �! V
denote the orthogonal projection onto V . Note that �F is a point of V and �S is an open
convex subset of V with �F =2 �S. We aim to show that there is a line L in V with �F 2 L
and L \ �S = �. Once this is established then F � = ��1L is a (k + 1)-dimensional at
satisfying our requirements. We establish the existence of L by contradiction. Assume there
is no such line L. Let L1 and L2 be orthogonal lines in V through �F , these must meet
�S. Denote by V1 the plane spanned by L1 and L2. Then V1 \�S is an open 2-dimensional
convex subset of the plane V1. It follows from Lemma 4.4 that there is a line L in V1 such
that�F 2 L and L\ (V1 \ �S) = �. But L\ V1 = L and so L is the line we are seeking. �

Corollary 4.6. Let S be an open convex subset of En and let F be a k-dimensional at

(0 � k < n) with F \ S = �. Then there is a hyperplane H with H � F and H \ S = �.

Theorem 4.7. Suppose A and B are convex subsets of En with intA 6= �. If B \ intA = �
there is a hyperplane that separates A and B.

Proof. Note that (intA)�B is an open convex set in E
n which does not contain the origin.

It follows from Corollary 4.6 that there is a hyperplaneH = [f : 0] withH\[(intA)�B] = �;
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18 x4. SEPARATING HYPERPLANES

f is a non-trivial linear functional on E
n . We can assume, without loss of generality, that

f(intA)�B) > 0. Now let x 2 A, y 2 B, and x0 2 intA. We know from Theorem 2.9 that

xn =
1

n
x0 +

�
n� 1

n

�
x 2 relintx0x � intA:

Then 0 < f(x0 � y) = f(xn)� f(y). Furthermore,

f(x) = lim
n�!1

f(xn) � f(y):

Consequently, if � = infff(x) : x 2 Ag, the sets A and B are separated by [f : �]. �

Note that if A and B are closed line segments in E
2 with relative interiors which intersect

at the origin and lie in di�erent lines, then intA = intB = �. However, there is no line that
separates them.

If H = [f : �] the corresponding closed and open half-spaces are the sets

fx 2 E
n : f(x) � �g and fx 2 E

n : f(x) � �g (closed)

fx 2 E
n : f(x) > �g and fx 2 E

n : f(x) < �g (open)

If S is a subset of En and H is a hyperplane, we say that H bounds S if S is contained in
one of the closed half-spaces determined by H; otherwise H is said to cut S. Note that H
cuts S if and only if S is a non-empty intersection with both open half-spaces determined
by H.

Lemma 4.10. A hyperplane H cuts the convex set S if and only if S is not a subset of H
and H \ relintS 6= �.

Proof. Let H = [f : �] and z 2 relintS. Assume H cuts S, clearly S is not a subset of
H. We can choose x; y 2 S with f(x) > � and f(y) < �. If z 2 H, we are �nished.
Otherwise assume, without loss of generality, f(z) > �. Note that there is a p 2 relintyz
with f(p) = �; in fact

p =

�
f(z) � �

f(z) � f(y)

�
y +

�
�� f(y)

f(z) � f(y)

�
z:

Conversely, assume S is not a subset of H and H \ relintS 6= �. Assume dimS = k and put
J = a� S. Since J 6� H, J \H is a hyperplane in J . Now there is a ball B(p; �) \ J � S,
since J \H contains the midpoint of this ball, there are points of the ball on both sides of
J \H. Consequently, S meets both open half-spaces determined by H. �

Theorem 4.11. Suppose A and B are convex subsets of En such that dim(A [ B) = n.
Then A and B can be separated by a hyperplane if and only if relintA \ relintB = �.

Proof. If x 2 relintA \ relintB, then any separating hyperplane H would have to contain
x. Furthermore, if A � H and B � H then dim(A [ B) < n. It follows therefore, from
Lemma 4.10 that no such separating hyperplane exists.
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For the converse, we assume that relintA \ relintB = � and construct a separating
hyperplane. If dimA = n, then intA 6= �. Note that relintB is convex and so Theorem
4.7 shows that there is a hyperplane H separating A and relintB. Consequently, A and
relintB lie in opposite closed half-spaces determined by H. It follows from Theorem 2.9
that A and B lie in opposite closed half-spaces determined by H. The result is therefore
established if either one of the bodies has dimension n. We now assume inductively that the
result is established in the case that either body has dimension at least k, for some k � n.
We further assume that dimA = k � 1. We can choose a hyperplane J containing A, and
a line segment I such that I 6� J (and not parallel to J). If x and y are the endpoints of

I then A+
x + y

2
is a (k � 1)-dimensional convex body lying in the hyperplane J +

x+ y

2
.

Also we can write
A + I = C [D

where C andD are convex sets lying in opposite closed half-spaces determined by J+
x+ y

2
.

Furthermore A+ I is of dimension k, as are C and D. We note that we cannot have

relintC \

�
relintB +

x + y

2

�
6= � and relintD \

�
relintB +

x+ y

2

�
6= �:

Without loss of generality, we may assume

A + x � C and A + y � D:

We have, if the above sets were both non-empty,

a1 + �x + (1� �)y = b1 +
x+ y

2

where a1 2 relintA, b1 2 relintB, and 1=2 < � < 1; and

a2 + �x + (1� �)y = b2 +
x+ y

2

where a2 2 relintA, b2 2 relintB, and 0 < � < 1=2. Since � < 1=2 < �, we can choose
0 < � < 1 such that

�� + (1� �)� =
1

2
:

Then

�(b2 +
x+ y

2
) + (1� �)(b1 +

x+ y

2
) = �b2 + (1� �)b1 +

x + y

2

= (1 � �)(a1 + �x+ (1� �)y) + �(a2 + �x+ (1 � �)y)

= (1 � �)a1 + �a2 +
x+ y

2
:

Consequently
(1 � �)a1 + �a2 = (1 � �)b1 + �b2
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and so
relintA \ relintB 6= �;

a contradiction. So we may assume, without loss of generality, that

relintC \ (relintB +
x + y

2
) = �:

Now dimC = k and so by inductive assumption, there is a hyperplane H separating C and

B +
x + y

2
. But A+

x+ y

2
� C and so H �

x+ y

2
separates A and B. �

Theorem 4.12. Suppose A and B are non-empty convex sets with A compact and B closed.

Then there is a hyperplane which strictly separates A and B if and only if A and B are

disjoint.

Proof. If there is a hyperplane strictly separating A and B then it follows immediately that
A and B are disjoint.

Conversely, if A and B are disjoint then we know from the �rst homework assignment
that d(A;B) > 0 where

d(A;B) = inffd(a; b) : a 2 A; b 2 Bg:

Put C = B(o; 1
2
d(A;B)) then A + C and B + C are disjoint, open convex sets. It follows

from Theorem 4.11 that they can be separated by a hyperplane H. It is now clear that A
and B are strictly separated by H. �

Notice that compactness is essential in the above result. For example, if

A = f(x; y) 2 E
2 : x � 0; y �

1

x
g and B = f(x; y) 2 E

2 : y = 0g

then A and B are disjoint, closed convex sets which cannot be strictly separated.

Theorem 4.13. Suppose A and B are non-empty compact sets. Then there is a hyperplane

H which strictly separates A and B if and only if convA \ convB = �.

Proof. We know from Theorem 2.30 that convA and convB are compact. If they are
disjoint, we may use Theorem 4.12 to �nd a hyperplane which strictly separates them. This
same hyperplane strictly separates A and B.

Conversely, we suppose the hyperplane H = [f : �] strictly separates A and B with
f(A) > � and f(B) < �. If x 2 convA there are points a1; : : : ; an+1 2 A and �1; : : : ; �n+1 �
0 such that

x = �1a1 + � � �+ �n+1an+1 and �1 + � � �+ �n+1 = 1:

Hence
f(x) = �f(a1) + � � �+ �n+1f(an+1) > (�1 + � � �+ �n+1)� = �:

So f(convA) > �, similarly f(convB) < �. Consequently convA \ convB = �. �
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Theorem 4.14. Suppose A and B are non-empty compact subsets of En . There is a hy-

perplane strictly separating A and B if and only if for each set T of n + 1 or fewer points

of B, there is a hyperplane strictly separating A and T .

Proof. In one direction this result is trivial. Conversely, assume that for each set T (above)
there is a hyperplane strictly separating A and T . Now suppose that y 2 convB. We can
�nd b1; : : : ; bn+1 2 B and �1; : : : ; �n+1 � 0 such that

y = �1b1 + � � �+ �n+1bn+1 and �1 + � � �+ �n+1 = 1:

We letH = [f : �] be a hyperplane strictly separatingA and T = fb1; : : : ; bn+1g with f(A) >
� and f(T ) < �. As in the proof of Theorem 4.13 we have f(y) < � and f(convA) > �.
Consequently, y =2 convA and so convA \ convB = �. Theorem 4.13 now provides the
required strict separation. �


