
Section 3. Hyperplanes and Linear Functionals

A hyperplane in E
n was already de�ned to be an (n � 1)-dimensional at; that is, a

translate of an (n � 1)-dimensional subspace of En . A function f : En �! E
m is said to be

linear if

f(x + y) = f(x) + f(y) (additive)

f(�x) = �f(x) (homogeneous)

for all x; y 2 En and all � 2 R.
A linear function f : En �! R is called a linear functional, in which case we denote by

[f : �] the set
fx 2 En : f(x) = �g (� 2 R):

Theorem 3.2. Suppose H is a subset of En . Then H is a hyperplane if and only if there

is a non-trivial linear functional f and a number � such that H = [f : �].

Proof. First assume H is a hyperplane and let x0 2 H. Then V = H � x0 is the (n � 1)-
dimensional subspace of En parallel to H. We denote by v0 a unit vector orthogonal to V .
For each x 2 En , denote by xV the orthogonal projection of x onto V (i.e. the nearest point
of V to x). We know, from linear algebra, that there is a number � such that

x = xV + �v0:

It is clear that � is uniquely determined by x. We de�ne f : En �! R by f(x) = �; so jf j
measures the distance of x to V .

Next we check that f is a linear functional. If x; y 2 En , we have

x = xV + �v0 and y = yV + �v0

and so
x+ y = xV + yV + (�+ �)v0:

Consequently,
f(x + y) = �+ � = f(x) + f(y):

Also, if � 2 R, �x = �xV + ��v0 and so f(�x) = �� = �f(x). So f is a linear functional.
Finally we show that H = [f : �] where � = f(x0). If h 2 H then h = h0 + v where

v 2 V . Consequently f(h) = f(x0) + f(v) = f(x0). Now x0 = w0 + �v0 where w0 2 V
and so if f(x) = � then x = xV + �v0 and therefore x � x0 = xV � w0 2 V and so x 2 H
([f : �] � H). So we have proved a non-trivial linear functional f and a number � such that
H = [f : �].

For the converse, note that, since f is non-trivial, f : En �! R is surjective. Conse-
quently, dimker f = n � 1. Put V = ker f , an (n � 1)-dimensional subspace of En . Now
assumef(x0) = � and complete the proof by showing that [f : �] = V + x0. If v 2 V then
f(v + x0) = f(v) + f(x0) = � and so V + x0 � [f : �]. But [f : �] is an a�ne set which is
not the whole space. Consequently dim[f : �] � n� 1 and so [f : �] = V + x0. �
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Theorem 3.3. If f and g are linear functionals on E
n such that [f : �] = [g : �] for some

�; � 2 R then there is a number � 6= 0 such that f = �g and � = ��.

Proof. First assume g is trivial. Then [g : �] = E
n if � = 0 and [g : �] = � if � 6= 0. So, if

� = 0 we have [f : �] = E
n . Consequently � = f(0) = 0 and f is trivial. In this case any

� 6= 0 works. If � 6= 0 we have [f : �] = � and so � 6= f(0) = 0 and f is trivial since, if
there were an x 2 En with f(x) 6= 0 then f( �x

f(x)
) = �, which is impossible. In this case put

� = �=�.
Now assume g is not trivial and choose x0 2 E

n with g(x0) 6= 0. Put � = f(x0)=g(x0)
and V = [g : 0], the kernel of g. Note that V is an (n � 1)-dimensional subspace En . We
have

v +
�

g(x0)
x0 2 [g : �] for all v 2 V:

Hence

v +
�

g(x0)
x0 2 [f : �] for all v 2 V ;

equivalently

f(v) +
�

g(x0)
f(x0) = � for all v 2 V:

Thus
f(v) + �� = � for all v 2 V:

The fact that v is a subspace means o 2 V and therefore � = ��. Furthermore, if x 2 E
n ,

there is a � 2 R such that x = v + �x0 for some v 2 V ; this follows from the fact that
dimV = n� 1 and x0 2 V . Hence

f(x) = f(r) + �f(x0) = �f(x0) = ��g(x0) = �(g(v) + �g(x0)) = �g(x)

as required.
�

Theorem 3.4 and 3.5. Let f be a linear functional de�ned on En .

a) There is a z 2 En such that f(x) = hx; zi for all x 2 En ;
b) f is continuous;

c) Each set of [f : �] is closed and therefore every hyperplane is closed.

Proof.

a) If f is trivial put z = o. Otherwise put V = [f : 0]. Then V is an (n�1)-dimensional
subspace of En and we may choose a vector u orthogonal to V . We put g(x) = hx; ui
for each x 2 E

n . Then g is a linear functional on E
n and [f : 0] = [g : 0]. It

follows from Theorem 3.3 that there is a � 2 R with f = �g. If we put z = �u then
f(x) = hx; zi for each x 2 En .

b) It follows from a) that

jf(x) � f(y)j = jhx � y; zij � kx� yk kzk for all x; y 2 En :
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So if " > 0 is given, we choose � > 0 so that

� kzk < ":

Then, if y 2 B(x; �) we have f(y) 2 B(f(x); "). Consequently f is continuous.
c) It follows from b) that

fx : f(x) > �g [ fx : f(x) < �g = f�1(�;1) [ f�1(�1; �; )

is open. Now [f : �] is the complement of this set and must therefore be closed. We
learned in Theorem 3.2 that each hyperplane is of the form [f : �] for some linear
functional f and some member �. So each hyperplane is closed.

�

We note that we have shown that if H is a hyperplane then there is a  2 R and a vector
z 2 En such that

H = fx 2 En : hx; zi = g:

We also know that z is orthogonal to all vectors parallel to H since it is orthogonal to all
vectors in the subspace parallel to H. We could choose z to be a unit vector, in which case
 measures that distance from o to H.


