Section 3. Hyperplanes and Linear Functionals

A hyperplane in \mathbb{E}^{n} was already defined to be an $(n-1)$-dimensional flat; that is, a translate of an $(n-1)$-dimensional subspace of \mathbb{E}^{n}. A function $f: \mathbb{E}^{n} \rightarrow \mathbb{E}^{m}$ is said to be linear if

$$
\begin{align*}
f(x+y) & =f(x)+f(y) \tag{additive}\\
f(\lambda x) & =\lambda f(x)
\end{align*}
$$

(homogeneous)
for all $x, y \in \mathbb{E}^{n}$ and all $\lambda \in \mathbb{R}$.
A linear function $f: \mathbb{E}^{n} \rightarrow \mathbb{R}$ is called a linear functional, in which case we denote by [$f: \alpha$] the set

$$
\left\{x \in \mathbb{E}^{n}: f(x)=\alpha\right\} \quad(\alpha \in \mathbb{R})
$$

Theorem 3.2. Suppose H is a subset of \mathbb{E}^{n}. Then H is a hyperplane if and only if there is a non-trivial linear functional f and a number δ such that $H=[f: \delta]$.

Proof. First assume H is a hyperplane and let $x_{0} \in H$. Then $V=H-x_{0}$ is the $(n-1)$ dimensional subspace of \mathbb{E}^{n} parallel to H. We denote by v_{0} a unit vector orthogonal to V. For each $x \in \mathbb{E}^{n}$, denote by x_{V} the orthogonal projection of x onto V (i.e. the nearest point of V to x). We know, from linear algebra, that there is a number α such that

$$
x=x_{V}+\alpha v_{0} .
$$

It is clear that α is uniquely determined by x. We define $f: \mathbb{E}^{n} \rightarrow \mathbb{R}$ by $f(x)=\alpha$; so $|f|$ measures the distance of x to V.

Next we check that f is a linear functional. If $x, y \in \mathbb{E}^{n}$, we have

$$
x=x_{V}+\alpha v_{0} \quad \text { and } \quad y=y_{V}+\beta v_{0}
$$

and so

$$
x+y=x_{V}+y_{V}+(\alpha+\beta) v_{0} .
$$

Consequently,

$$
f(x+y)=\alpha+\beta=f(x)+f(y) .
$$

Also, if $\lambda \in \mathbb{R}, \lambda x=\lambda x_{V}+\lambda \alpha v_{0}$ and so $f(\lambda x)=\lambda \alpha=\lambda f(x)$. So f is a linear functional.
Finally we show that $H=[f: \delta]$ where $\delta=f\left(x_{0}\right)$. If $h \in H$ then $h=h_{0}+v$ where $v \in V$. Consequently $f(h)=f\left(x_{0}\right)+f(v)=f\left(x_{0}\right)$. Now $x_{0}=w_{0}+\delta v_{0}$ where $w_{0} \in V$ and so if $f(x)=\delta$ then $x=x_{V}+\delta v_{0}$ and therefore $x-x_{0}=_{V_{V}}-w_{0} \in V$ and so $x \in H$ ($[f: \delta] \subset H$). So we have proved a non-trivial linear functional f and a number δ such that $H=[f: \delta]$.

For the converse, note that, since f is non-trivial, $f: \mathbb{E}^{n} \rightarrow \mathbb{R}$ is surjective. Consequently, $\operatorname{dim} \operatorname{ker} f=n-1$. Put $V=\operatorname{ker} f$, an $(n-1)$-dimensional subspace of \mathbb{E}^{n}. Now assume $f\left(x_{0}\right)=\delta$ and complete the proof by showing that $[f: \delta]=V+x_{0}$. If $v \in V$ then $f\left(v+x_{0}\right)=f(v)+f\left(x_{0}\right)=\delta$ and so $V+x_{0} \subset[f: \delta]$. But $[f: \delta]$ is an affine set which is not the whole space. Consequently $\operatorname{dim}[f: \delta] \leq n-1$ and so $[f: \delta]=V+x_{0}$.

Theorem 3.3. If f and g are linear functionals on \mathbb{E}^{n} such that $[f: \alpha]=[g: \beta]$ for some $\alpha, \beta \in \mathbb{R}$ then there is a number $\lambda \neq 0$ such that $f=\lambda g$ and $\alpha=\lambda \beta$.
Proof. First assume g is trivial. Then $[g: \beta]=\mathbb{E}^{n}$ if $\beta=0$ and $[g: \beta]=\phi$ if $\beta \neq 0$. So, if $\beta=0$ we have $[f: \alpha]=\mathbb{E}^{n}$. Consequently $\alpha=f(0)=0$ and f is trivial. In this case any $\lambda \neq 0$ works. If $\beta \neq 0$ we have $[f: \alpha]=\phi$ and so $\alpha \neq f(0)=0$ and f is trivial since, if there were an $x \in \mathbb{E}^{n}$ with $f(x) \neq 0$ then $f\left(\frac{\alpha x}{f(x)}\right)=\alpha$, which is impossible. In this case put $\lambda=\alpha / \beta$.

Now assume g is not trivial and choose $x_{0} \in \mathbb{E}^{n}$ with $g\left(x_{0}\right) \neq 0$. Put $\lambda=f\left(x_{0}\right) / g\left(x_{0}\right)$ and $V=[g: 0]$, the kernel of g. Note that V is an $(n-1)$-dimensional subspace \mathbb{E}^{n}. We have

$$
v+\frac{\beta}{g\left(x_{0}\right)} x_{0} \in[g: \beta] \quad \text { for all } v \in V
$$

Hence

$$
v+\frac{\beta}{g\left(x_{0}\right)} x_{0} \in[f: \alpha] \quad \text { for all } v \in V
$$

equivalently

$$
f(v)+\frac{\beta}{g\left(x_{0}\right)} f\left(x_{0}\right)=\alpha \quad \text { for all } v \in V
$$

Thus

$$
f(v)+\lambda \beta=\alpha \quad \text { for all } v \in V .
$$

The fact that v is a subspace means $o \in V$ and therefore $\alpha=\lambda \beta$. Furthermore, if $x \in \mathbb{E}^{n}$, there is a $\mu \in \mathbb{R}$ such that $x=v+\mu x_{0}$ for some $v \in V$; this follows from the fact that $\operatorname{dim} V=n-1$ and $x_{0} \in V$. Hence

$$
f(x)=f(r)+\mu f\left(x_{0}\right)=\mu f\left(x_{0}\right)=\mu \lambda g\left(x_{0}\right)=\lambda\left(g(v)+\mu g\left(x_{0}\right)\right)=\lambda g(x)
$$

as required.

Theorem 3.4 and 3.5. Let f be a linear functional defined on \mathbb{E}^{n}.
a) There is a $z \in \mathbb{E}^{n}$ such that $f(x)=\langle x, z\rangle$ for all $x \in \mathbb{E}^{n}$;
b) f is continuous;
c) Each set of $[f: \alpha]$ is closed and therefore every hyperplane is closed.

Proof.
a) If f is trivial put $z=o$. Otherwise put $V=[f: 0]$. Then V is an $(n-1)$-dimensional subspace of \mathbb{E}^{n} and we may choose a vector u orthogonal to V. We put $g(x)=\langle x, u\rangle$ for each $x \in \mathbb{E}^{n}$. Then g is a linear functional on \mathbb{E}^{n} and $[f: 0]=[g: 0]$. It follows from Theorem 3.3 that there is a $\lambda \in \mathbb{R}$ with $f=\lambda g$. If we put $z=\lambda u$ then $f(x)=\langle x, z\rangle$ for each $x \in \mathbb{E}^{n}$.
b) It follows from a) that

$$
|f(x)-f(y)|=|\langle x-y, z\rangle| \leq\|x-y\|\|z\| \text { for all } x, y \in \mathbb{E}^{n} .
$$

So if $\varepsilon>0$ is given, we choose $\delta>0$ so that

$$
\delta\|z\|<\varepsilon
$$

Then, if $y \in B(x, \delta)$ we have $f(y) \in B(f(x), \varepsilon)$. Consequently f is continuous.
c) It follows from b) that

$$
\{x: f(x)>\alpha\} \cup\{x: f(x)<\alpha\}=f^{-1}(\alpha, \infty) \cup f^{-1}(-\infty, \alpha,)
$$

is open. Now $[f: \alpha]$ is the complement of this set and must therefore be closed. We learned in Theorem 3.2 that each hyperplane is of the form $[f: \alpha]$ for some linear functional f and some member α. So each hyperplane is closed.

We note that we have shown that if H is a hyperplane then there is a $\gamma \in \mathbb{R}$ and a vector $z \in \mathbb{E}^{n}$ such that

$$
H=\left\{x \in \mathbb{E}^{n}:\langle x, z\rangle=\gamma\right\} .
$$

We also know that z is orthogonal to all vectors parallel to H since it is orthogonal to all vectors in the subspace parallel to H. We could choose z to be a unit vector, in which case γ measures that distance from o to H.

