SECTION 3. HYPERPLANES AND LINEAR FUNCTIONALS

A hyperplane in E" was already defined to be an (n — 1)-dimensional flat; that is, a
translate of an (n — 1)-dimensional subspace of E". A function f : E* — E™ is said to be
linear if

fle+y) = flx)+ fly) (additive)
fAz) = Af(x) (homogeneous)

for all z,y € E™ and all A € R.
A linear function f : E® — R is called a linear functional, in which case we denote by
[f : ] the set
e fr)=a}  (aER).

Theorem 3.2. Suppose H is a subset of E*. Then H 1is a hyperplane if and only if there
is a non-trivial linear functional f and a number § such that H = [f : 4].

Proof. First assume H is a hyperplane and let g € H. Then V = H — xg is the (n — 1)-
dimensional subspace of E* parallel to H. We denote by vy a unit vector orthogonal to V.
For each x € E", denote by v the orthogonal projection of  onto V' (i.e. the nearest point
of V to x). We know, from linear algebra, that there is a number o« such that

r=2xy + avg.

It is clear that o is uniquely determined by x. We define f : E* — R by f(z) = «; so |f]
measures the distance of = to V.
Next we check that f is a linear functional. If x,y € E", we have

r=zxyv + avg and y = yv + Pug

and so

r+y=zav+yv+ (a+ 3)v.

Consequently,
flaty)=a+p8=flz)+ fly)

Also, if A € R, Az = Axy + Aavg and so f(Ax) = Ao = Af(x). So f is a linear functional.

Finally we show that H = [f : §] where § = f(xg). If h € H then h = hg + v where
v € V. Consequently f(h) = f(xo) + f(v) = f(xo). Now xg = wg + dvg where wg € V
and so if f(x) = § then © = xy + dvg and therefore ¥ — 29 = vy —wo € V and so v € H
([f : 0] C H). So we have proved a non-trivial linear functional f and a number ¢ such that
H=[f:4].

For the converse, note that, since f is non-trivial, f : E* — R is surjective. Conse-
quently, dimker f = n — 1. Put V = ker f, an (n — 1)-dimensional subspace of E". Now
assumef(xg) = ¢ and complete the proof by showing that [f : 6] =V 4+ x¢. If v € V then
flo+x0) = f(v)+ floo) =6 and so V + 2o C [f : 6]. But [f : §] is an affine set which is
not the whole space. Consequently dim[f : 6] <n—1andso [f:6]=V +a29. O
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Theorem 3.3. If f and g are linear functionals on E" such that [f : o] = [g : (] for some
a, 3 € R then there is a number A\ # 0 such that f = A\g and a = \j3.

Proof. First assume ¢ is trivial. Then [¢: f] =E" if =0 and [¢g: 5] = ¢ if § # 0. So, if
B =0 we have [f : o] = E". Consequently o = f(0) = 0 and f is trivial. In this case any
A # 0 works. If 3 # 0 we have [f : a] = ¢ and so a # f(0) = 0 and f is trivial since, if
there were an @ € E" with f(x) # 0 then f(%) = «, which is impossible. In this case put
A=a/p.

Now assume ¢ is not trivial and choose xg € E™ with g(xo) # 0. Put A = f(xg)/g(x0)
and V = [g : 0], the kernel of g. Note that V' is an (n — 1)-dimensional subspace E". We
have

v+ xo € [g: f] for all v € V.
9(xo)
Hence
v+ b xo € [f 1 a] for all v € V;
g(xo)
equivalently
v) + To) =« for all v € V.
fv) g(xo)f( 0)
Thus

fl)+ A8 =qa for all v € V.

The fact that v is a subspace means o € V and therefore & = A\3. Furthermore, if * € E",
there is a ¢ € R such that ©+ = v + pxo for some v € V; this follows from the fact that
dimV =n—1 and zg € V. Hence

fx) = f(r) + pf(xo) = pflwo) = prg(zo) = Mg(v) + pg(zo)) = Ag(x)

as required.
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Theorem 3.4 and 3.5. Let f be a linear functional defined on E™.
a) There is a z € E" such that f(x) = (x,2) for all x € E™;

b) f is continuous;
c) Each set of [f: o] is closed and therefore every hyperplane is closed.

Proof.

a) If fis trivial put z = o. Otherwise put V' = [f : 0]. Then V is an (n— 1)-dimensional
subspace of E" and we may choose a vector u orthogonal to V. We put g(x) = (@, u)
for each # € E". Then ¢ is a linear functional on E" and [f : 0] = [¢ : 0]. It
follows from Theorem 3.3 that there is a A € R with f = A\g. If we put z = A\u then
flz) = (x,z) for each x € E".

b) It follows from a) that

[f(2) = Fy)l = [z —y,2)[ <[z =yl ][] for all 2,y € E".
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So if ¢ > 0 is given, we choose § > 0 so that
dz] <e.

Then, if y € B(x,d) we have f(y) € B(f(x),e). Consequently f is continuous.
¢) It follows from b) that

{o:f(x) > a}U{z: f(z) <a}=f"(a,00) UfT (—00,0,)

is open. Now [f : a] is the complement of this set and must therefore be closed. We
learned in Theorem 3.2 that each hyperplane is of the form [f : a] for some linear
functional f and some member a. So each hyperplane is closed.
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We note that we have shown that if H is a hyperplane then there is a v € R and a vector
z € E" such that
H={xecE":(x,2) =~}

We also know that z is orthogonal to all vectors parallel to H since it is orthogonal to all
vectors in the subspace parallel to H. We could choose z to be a unit vector, in which case
~ measures that distance from o to H.



