SECTION 2. CONVEX SETS

If z,y € E® then zy denotes the line segment joining z and y, thus
zy={dz+(1-Ny:0<A<1}

A set S is star shaped relative to the point # € S if zy C S foreach y € S. A set S is convez
if 7y C S for each pair z,y € S. The kernel K of a set S is defined by

K={zeS:zyC Sforallye S}

Theorem 2.6. The kernel of any set S is a convez set.

Proof. Let z,y be in the kernel of S. For each 0 < X\ <1, we must show that Az + (1 — A)y
is in the kernel of S. To this end, let z € S, then we must show that for each 0 < a <1

adz+a(l—ANy+(1—-—a)z €S.
We will do this as follows. Find w € £z so that
alz +a(l =Ny + (1 — a)z € wy.

We know that w € S since « is in the kernel of S, then we know that wy € S since y is in

the kernel of S. We put 6 = I——a; clearly 0 < 6 <1 and
1—a(l=2X)
aA
1- 0= ————.
1—a(l=2X)

If we put w = 0z + (1 — )z then w € zz. Furthermore, 0 < a(1 — A) <1 and
l—a(l-ANw+al-ANy=arz+a(l-ANy+ (1 —a)z

as required. [

A set S is said to be affine if z,y € S implies that Az 4 (1 —A)y € S, for all real numbers
A. Notice that this means that the whole line containing # and y lies in S.

Theorem 2.13. A set S in E™ s affine of and only if it 1s a translate of a subspace of E™.

Proof. Assume S is affine and z € S. We put U = —z + S, and aim to show that U is a
subspace of E*. Clearly, the origin is in U. Now let uwi,us € U and let «, be any real
numbers; it will suffice to prove that awu; + fus € U. First note that if w € U then —u € U.
To see this, observe that there is an s € S such that v = s — . Since S is affine, we know
that —s + 2z € S and therefore —u = —s+ 2z = (—s+2z) —z € U.

Consequently, we can assume, without loss of generality, that a + 3 # 0. We choose
81,82 € S such that

U = 8] — T and Uy = 89 — T.



CONVEXITY THEORY I 7

Then
asy Bsa

+ es
a+pB a+p

and so

( asy Bsa

a+ﬁ+a+ﬁ>+u—a—ﬁn—weU

auy + fuz = (a+ B)

Conversely, assume S is a translate of a subspace U of E?; thus S =U +¢. If 2,y € S then
there are u,v € U such that

r=u-+t y=uv-4t.

If A € R, we have
Az +(1-=ANy= u+(1-ANv+teS

as required. [

In view of the above theorem, affine sets are often called flats, affine subspaces, or linear
varieties. The dimension of a flat is the dimension of the parallel subspace. A flat of
dimension 1 is called a line and a flat of dimension n — 1 is called a hyperplane. Notice that
points are zero dimensional flats. The following results are immediate consequences of the
definitions of convex sets and affine sets:

a) every intersection of convex sets is convex;
b) every intersection of affine sets is affine.

For any set S, conv S is the intersection of all convex sets containing S and aff S is the
intersection of all affine sets containing S. These are referred to as the convez hull and the
affine hull of S. The interior of S relative to aff S is called the relative interior of S, and is
denoted relint S. For example, if S is a single point S = {z} then relint S = {z}. If S is the
segment 7y then

relint S = {Az+ (1 -AN)y:0< A <1}
Theorem 2.9. Let C be a convez set in E™*. If ¢ € int C and y € C then relint 7y C int C.

Proof. First choose § > 0 so that B(z,d) C C, and let w € relint zy. Thereisa 0 < XA <1
with

w=Az+ (1 - Ny.
We claim B(w,Ad) C C and so w € int C, as required. To prove that B(w,A§) C C, let
v € B(w,\é). Then v = w + ru where 0 < r < Ad and |ju]| = 1. Thus

v:)\w—l—(l—)\)y—l—ru:)\(w—l—gu)—l—(l—)\)y.

Now z 4+ fu € B(z,6) C C and so v € C, as required. [

Corollary 2.10. If C is convez, then so 1s int C.
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Theorem 2.11. If C 1s convez, then so s clC.

Proof. First note that, if ¢ € c1C and é§ > 0, there is an zg € B(z,d)NC. If this were not the
case then we would have B(z,d) C~C, in which case z € int(~ C). The latter is impossible
because ¢ € clC C~int(~ (). Therefore, for each § > 0, we can choose zg,yg € C with
zg € B(z,6) and yo € B(y,d). If z =Xz + (1 —A)y then zp = Azg + (1 — A)yo € B(z,6)NC

since

d(z,20) = d(Azg + (1 — Nyo, Az + (1 — A)y)
<d(Azg + (1 = Nyo, Az + (1 — AN)yo)
+d(Az + (1 — Nyo, Az + (1 — A)y)
= d(Azg, Az) + d((1 — Nyo, (1 — N)y)
= M(zo,z) + (1 — A)d(yo,y)
<A+ (1—=X)d=4.
Consequently, for every § > 0, B(z,6) N C # ¢. This implies that z € clC because,

if not, there is a closed set ' O C with z ¢ F. But then there is a § > 0 such that
B(z,8) C~F C~C; since F' is open. Thus z € c1C and the proof is complete. O

If A1,..., A are real numbers such that A\; + --- + Ay = 1, then the point
Yy = Atz + -+ Az

is called an affine combination of the points @1, ..., 2. If we also have A; > 0for: =1,...,k
then y is called a convex combination of zq,...,xg.

Theorem 2.15. A set S s convez if and only if every convexr combination of points of S
lres in S.

Theorem 2.16. A set S is affine if and only if every affine combination of points of S lies
in S.

Proof of Theorems 2.15 and 2.16. If every convex(affine) combination of points of S lies in
S then S is convex(affine). This is true since the definition of convex(affine) set just requires
that every convex(affine) combination of two points of S lies in S.

For the converse, assume S is convex(affine) then, as above, every convex(affine) com-
bination of two points lies in S. We now proceed by induction on k. We assume that the
statement is true for all combinations of k points of S and let z1,...,z; € S. We assume

z=Az1+ -+ Ae+1Tht1

is a convex(affine) combination. Clearly, there is a A; with A; # 1. If necessary relabel the

points so that Agy1 # 1, in which case A\; +--- 4+ Ax # 0. Then

)\1 )\k
— (M gAY [ — A T S by ‘
z=(A1+ -+ k)(Al_l_”‘_l_)‘kwl‘F +)\1+““|‘)\kwk>+ k1Tt 1
The inductive hypothesis implies that
A A
! T4 —r 2 €S.

(D VISR VI
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But then
= (1— A1)y + Aeg12p41 € S
as required. 0O 0O
The set x1,...,2z; of points is said to be affinely dependent if there are real numbers
A1,y ..., Ak (not all zero) such that

Azi+ -+ Mgz = o0 and A4+ A =0.

Otherwise the points are said to be affinely independent.

Theorem 2.18. Any n + 1 points in E™ are linearly dependent. Any n + 2 points in E"
are affinely dependent.

Proof. We recall from linear algebra that the dimension of a vector space is the maximum
number of linearly independent vectors. So the first statement is immediate. For the second,
let ©1,...,2,42 be n+ 2 points in E*. Then zs — 21,23 — 1,...,Zp+2 — z1 forms a set of
n-+1 vectors in E® and these must be linearly dependent. So there are numbers A, ..., Apyo
not all zero, such that

Ao(za — 1) + As(zs —21) + - + Ans2(@ng2 —21) = O.

Hence if
A=A+ + Apg2)
then
M A At Anga =0
and
A1z + -+ Apg2Zpga = 0.
]

Theorem 2.22. For any set S, conv S(aff S) is the set of all convez(affine) combinations
of elements of S.

Proof. We denote by T the set of all convex(affine) combinations of points of S. We aim
to show that 7' = conv S(aff S). We know that conv S(aff S) is convex(affine) and S C

conv S(aff S). It therefore follows from Theorem 2.15(2.16) that 7' C conv S(aff S). Next
we prove that T' is convex(affine). Let @,y € T' and put

z=Adz+ (1 -y A eR.
There are points z1,...,2k, Y1,...,Ym € S and numbers a1, ...,ak, B1,...,8m with

T =a1x1] + -+ apek y:/Bly1_|__|_/8mym
a;+ - F+ap=1 B+ 4 Bm=1.
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Hence
z—)\Zawz—l— (I1—2A Zﬂ]y]
Notice
k m
D Aai+ ) (1-NB;=2+(1-X) =1,
i=1 j=1

and so z i1s an affine combination of points of S. It follows that 7' is affine. Clearly 7' D S
and so T' D aff S which gives T' = aff 5. For the convex case, we would have a; > 0, 3; > 0
fori=1,...,k, j=1,...,m. Thenif 0 <X <1 we have Aa; > 0 and (1 — A)3; > 0. Hence
T is convex and so T' = conv S, as above. [

Our first major convexity result is the following theorem of Carathéodory. It shows
that the above result can be improved to the extent that we need only consider convex
combinations of n 4+ 1 points. We will also see that this is the best possible.

Theorem 2.23 (Carathéodory). If S is a non-empty subset of E* then each point of
conv S can be expressed as a convexr combination of at most n + 1 points of S.

Proof. We assume z € conv S and use Theorem 2.22 to choose points z1,...,z;x € S and
numbers Ay, ..., A; such that € = Ajxq 4+ -+ + Agxg where A1 +--- 4+ A =1, A; > 0 for all
t=1,2,..., k. Our objective is to show that we can make such a choice with k¥ < n+ 1. We
will achieve this by showing that if & > n 4 2 then we could reduce the number of points
z1,...,2 chosen.

Note that, if K > n + 2 then Theorem 2.18 shows that the points are affinely dependent.
Consequently, we can choose numbers ag, ..., ag, not all zero, such that

a1z + -+ agTp =0 and ar + -+ o =0.
Now let ¢ be any number and put
i = XN +tag fore=1,...k.
We note that, no matter what the value of ¢,
p1e1 + - 4 pree = Az + -+ Agep + oz + -+ ager) =

and

Ml‘|‘““|‘Mk:)\1‘|‘"“|‘)\k‘|‘t(a1‘|‘""|'ak):1‘

Now put
t =max{—X;/a; :a; >0,0=1,... k}.
We note that there must be an ¢ with a; > 0 and so ¢ < 0. We also have the following:
a) if a; =0, then p; = X\, +ta; =X, >0

b) if a; >0, then p; = A; +ta; >0
c) if a; <0, then p; =A; +ta; > A, >0



CONVEXITY THEORY I 11

Consequently p; > 0 forz =1,..., k. Furthermore, there is an ¢ such that p; = 0; namely
the value of ¢+ which produces the maximum member of the set
{=Xi/ai:a; >0,1 <i<k}.
Thus ¢ = piz1 + -+ + gz, g > 0, p1 + -+ + px = 1 and at least one of the p;’s is

zero. Hence ¢ has been written as a convex combination of at most £ — 1 points of S. This
completes the proof. [

The number n + 1 above cannot be reduced. For example, if S comprises three points in
[F2 forming the vertices of a triangle, then the centroid of S cannot be expressed as a convex
combination of fewer than three points of S.

The convex hull of a finite set of points is called a polytope. If S = {z1,...,zk4+1} and
if dimaff S = k, then conv S is called a k-dimensional simplez or k-simplez. The points
z1,...,Tp41 are its vertices.

Note that a 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex is a triangle,
and a 3-simplex is a tetrahedon.

If S is a k-simplex with vertices z1,...,z541 and if z € S we know from Theorem 2.22
that there are numbers oy, ..., ax+1 such that

T=a1z1 + -+ Ak+1Tk+1 a1+ toppr =1 a; >0 1<:<k+1.
We will show that these numbers are uniquely determined by z. Assume that we have
z=p01z1 4+ + Brr1Tr+1 Bi+- -+ Brt1=1 B:i >0 1<:<k+1.
We put \; = 3; — a; for 1 <¢ < k + 1 and note that
A1+ -+ A1 =0.
Furthermore,
Az 4 -+ Agp1Zry1 = o.

However, the fact that dimaff S = k shows that the z1,..., 21 are affinely independent.
Consequently A\; = Ay = ... = Ax41 = 0 and we are finished.

So we have proved

Theorem 2.25. Let S be a k-simplex in E® with vertices ¢1,...,xky1, then each point of
S has a unique representation as a conver combination of the vertices.

We note that this result is not true in general. For example if z1,...,z4 are the vertices
of a square. Then

1 1 1
—(z1+ -+ xg) = §(w1 +z3) = 5(@ + z4).

4
If 1,...,2zk4+1 are the vertices of a k-simplex and
z=a121 + -+ Ak41Tkt1 a1+ Fagpr =1 a; >0
then the numbers oy, ..., ary1 are called the barycentric coordinates of x. The centroid of

a k-simplex is the point with barycentric coordinates

b b
kE+1’ "kE+1)°
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Theorem 2.27. Let S be a k-simplez, then relint S = ¢.

Proof. Assume the vertices of S are z1,...,2,4+1 and let V = aff S — zx 1 be the subspace
parallel to aff S. Let zg be the centroid of S. Define f : V — E* by

flui(zr —@pgr) + -+ prlee — zeg1) = (L1, -+, k)

and note that f is continuous. Now choose ¢ > 0 so that, if the distance between (ai,...,ax)
and (kl?, ceey klﬁ) € EF is less than € > 0 then the a; are all positive and o +---+ay < 1.

The continuity of f shows there is a § > 0 such that any point

(al, e ,ak) € f(B(CCO — CC]C_|_1,($))

satisfies the above condition. It follows that the B(zg,d) C S. Hence zg € relint S. O
Corollary 2.28. Let S be a k-dimensional convez subset of E™, then relint S # ¢.

Proof. We can choose k+1 affinely independent points in S. Their convex hull is a k-simplex
T. We have

¢ # relint T C relint S.
O
Theorem 2.29. If S is open then so is conv S.

Proof. Assume z € convS. We can choose z1,...,z;x € S and numbers A; > 0 with
A+ -4+ A =1and
r=Mz1+ -+ Apzg.

Also there is a number § > 0 such that
B(z,6) C S fori=1,2,...,k.

Ify € B(z,0) theny = z+ru where 0 <r < dand ||u|| =1. Puty; =z, +rufori =1,...,k
note that

Ay o F Ay =+ gz (A o+ X)) =2 4 ru =y

Now each y; € S and so y € conv.S. Hence conv S is open. [

We note that the convex hull of a closed set is not necessarily closed. For example if
S ={(z,y) €F? : 2%y*> =1,z > 0}

then S is closed, but
conv S = {(z,y) € E* : z > 0}

which is not closed. However, we have the following theorem.
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Theorem 2.30. If S is compact then so is conv S (in E*).
Proof. Let C be that compact subset of E*T! defined by

C:{(al,...,an+1)€En+1 ca;+ - -Fapyr=land a; >0,1 <i<n+41}.

Note that
E" x E™ x - x E* = B+,
—— —/
n+1
2
Define f : E(»t1D° - E* by
floaa,...,qnt1, 1, T2 ,...,Tpt1) = Q1T1 + Q182 + -+ + Qpy1Tny1.
N—— S S~
€Ert1 €k €k S

It is clear that f is continuous. Furthermore, if S is compact in E* then C' x § x --- x §
~—_———

n+1
1s compact in E("+1* and so f(C xS x---x8)is compact. But Caratheodory’s theorem
shows that
f(C xS x---x8§)=convS.

O



