
Section 2. Convex Sets

If x; y 2 En then xy denotes the line segment joining x and y, thus

xy = f�x + (1 � �)y : 0 � � � 1g:

A set S is star shaped relative to the point x 2 S if xy � S for each y 2 S. A set S is convex
if xy � S for each pair x; y 2 S. The kernel K of a set S is de�ned by

K = fx 2 S : xy � S for all y 2 Sg:

Theorem 2.6. The kernel of any set S is a convex set.

Proof. Let x; y be in the kernel of S. For each 0 � � � 1, we must show that �x+ (1� �)y
is in the kernel of S. To this end, let z 2 S, then we must show that for each 0 � � � 1

��x+ �(1 � �)y + (1� �)z 2 S:

We will do this as follows. Find w 2 xz so that

��x + �(1� �)y + (1� �)z 2 wy:

We know that w 2 S since x is in the kernel of S, then we know that wy 2 S since y is in

the kernel of S. We put � =
1� �

1� �(1� �)
; clearly 0 � � � 1 and

1� � =
��

1� �(1� �)
:

If we put w = �z + (1� �)x then w 2 xz. Furthermore, 0 � �(1� �) � 1 and

[1� �(1 � �)]w + �(1� �)y = ��x + �(1� �)y + (1 � �)z

as required. �

A set S is said to be a�ne if x; y 2 S implies that �x+(1��)y 2 S , for all real numbers
�. Notice that this means that the whole line containing x and y lies in S.

Theorem 2.13. A set S in En is a�ne if and only if it is a translate of a subspace of En .

Proof. Assume S is a�ne and x 2 S. We put U = �x + S, and aim to show that U is a
subspace of En . Clearly, the origin is in U . Now let u1; u2 2 U and let �; � be any real
numbers; it will su�ce to prove that �u1+�u2 2 U . First note that if u 2 U then �u 2 U .
To see this, observe that there is an s 2 S such that u = s � x. Since S is a�ne, we know
that �s+ 2x 2 S and therefore �u = �s+ x = (�s+ 2x) � x 2 U .

Consequently, we can assume, without loss of generality, that � + � 6= 0. We choose
s1; s2 2 S such that

u1 = s1 � x and u2 = s2 � x:
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Then
�s1
�+ �

+
�s2
�+ �

2 S

and so

�u1 + �u2 = (�+ �)

�
�s1
�+ �

+
�s2
�+ �

�
+ (1 � �� �)x � x 2 U:

Conversely, assume S is a translate of a subspace U of En ; thus S = U + t. If x; y 2 S then
there are u; v 2 U such that

x = u+ t y = v + t:

If � 2 R, we have

�x + (1� �)y = �u+ (1 � �)v + t 2 S

as required. �

In view of the above theorem, a�ne sets are often called 
ats, a�ne subspaces, or linear
varieties. The dimension of a 
at is the dimension of the parallel subspace. A 
at of
dimension 1 is called a line and a 
at of dimension n� 1 is called a hyperplane. Notice that
points are zero dimensional 
ats. The following results are immediate consequences of the
de�nitions of convex sets and a�ne sets:

a) every intersection of convex sets is convex;
b) every intersection of a�ne sets is a�ne.

For any set S, convS is the intersection of all convex sets containing S and a� S is the
intersection of all a�ne sets containing S. These are referred to as the convex hull and the
a�ne hull of S. The interior of S relative to a� S is called the relative interior of S, and is
denoted relintS. For example, if S is a single point S = fxg then relintS = fxg. If S is the
segment xy then

relintS = f�x+ (1 � �)y : 0 < � < 1g

Theorem 2.9. Let C be a convex set in En . If x 2 intC and y 2 C then relint xy � intC.

Proof. First choose � > 0 so that B(x; �) � C, and let w 2 relint xy. There is a 0 < � < 1
with

w = �x+ (1� �)y:

We claim B(w;��) � C and so w 2 intC, as required. To prove that B(w;��) � C, let
v 2 B(w;��). Then v = w + ru where 0 � r < �� and kuk = 1. Thus

v = �x+ (1� �)y + ru = �(x+
r

�
u) + (1� �)y:

Now x + r
�
u 2 B(x; �) � C and so v 2 C, as required. �

Corollary 2.10. If C is convex, then so is intC.
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Theorem 2.11. If C is convex, then so is clC.

Proof. First note that, if x 2 clC and � > 0, there is an x0 2 B(x; �)\C. If this were not the
case then we would have B(x; �) ��C, in which case x 2 int(�C). The latter is impossible
because x 2 clC �� int(� C). Therefore, for each � > 0, we can choose x0; y0 2 C with
x0 2 B(x; �) and y0 2 B(y; �). If z = �x+ (1� �)y then z0 = �x0 + (1� �)y0 2 B(z; �) \C
since

d(z; z0) = d(�x0 + (1 � �)y0; �x+ (1� �)y)

� d(�x0 + (1 � �)y0; �x+ (1� �)y0)

+ d(�x + (1� �)y0; �x + (1� �)y)

= d(�x0; �x) + d((1 � �)y0; (1� �)y)

= �d(x0; x) + (1� �)d(y0; y)

� �� + (1� �)� = �:

Consequently, for every � > 0, B(z; �) \ C 6= �. This implies that z 2 clC because,
if not, there is a closed set F � C with z =2 F . But then there is a � > 0 such that
B(z; �) ��F ��C; since F is open. Thus z 2 clC and the proof is complete. �

If �1; : : : ; �k are real numbers such that �1 + � � �+ �k = 1, then the point

y = �1x1 + � � �+ �kxk

is called an a�ne combination of the points x1; : : : ; xk. If we also have �i � 0 for i = 1; : : : ; k
then y is called a convex combination of x1; : : : ; xk.

Theorem 2.15. A set S is convex if and only if every convex combination of points of S
lies in S.

Theorem 2.16. A set S is a�ne if and only if every a�ne combination of points of S lies
in S.

Proof of Theorems 2.15 and 2.16. If every convex(a�ne) combination of points of S lies in
S then S is convex(a�ne). This is true since the de�nition of convex(a�ne) set just requires
that every convex(a�ne) combination of two points of S lies in S.

For the converse, assume S is convex(a�ne) then, as above, every convex(a�ne) com-
bination of two points lies in S. We now proceed by induction on k. We assume that the
statement is true for all combinations of k points of S and let x1; : : : ; xk 2 S. We assume

x = �1x1 + � � �+ �k+1xk+1

is a convex(a�ne) combination. Clearly, there is a �i with �i 6= 1. If necessary relabel the
points so that �k+1 6= 1, in which case �1 + � � �+ �k 6= 0. Then

x = (�1 + � � �+ �k)

�
�1

�1 + � � �+ �k
x1 + � � �+

�k
�1 + � � � + �k

xk

�
+ �k+1xk+1:

The inductive hypothesis implies that

y =
�1

�1 + � � �+ �k
x1 + � � � +

�k
�1 + � � �+ �k

xk 2 S:
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But then

x = (1� �k+1)y + �k+1xk+1 2 S

as required. � �

The set x1; : : : ; xk of points is said to be a�nely dependent if there are real numbers
�1; : : : ; �k (not all zero) such that

�1x1 + � � �+ �kxk = o and �1 + � � �+ �k = 0:

Otherwise the points are said to be a�nely independent.

Theorem 2.18. Any n + 1 points in E
n are linearly dependent. Any n + 2 points in E

n

are a�nely dependent.

Proof. We recall from linear algebra that the dimension of a vector space is the maximum
number of linearly independent vectors. So the �rst statement is immediate. For the second,
let x1; : : : ; xn+2 be n+ 2 points in En . Then x2 � x1; x3 � x1; : : : ; xn+2 � x1 forms a set of
n+1 vectors in En and these must be linearly dependent. So there are numbers �2; : : : ; �n+2
not all zero, such that

�2(x2 � x1) + �3(x3 � x1) + � � �+ �n+2(xn+2 � x1) = O:

Hence if

�1 = �(�2 + � � �+ �n+2)

then

�1 + �2 + � � �+ �n+2 = 0

and

�1x1 + � � �+ �n+2xn+2 = o:

�

Theorem 2.22. For any set S, convS(a� S) is the set of all convex(a�ne) combinations
of elements of S.

Proof. We denote by T the set of all convex(a�ne) combinations of points of S. We aim
to show that T = convS(a� S). We know that convS(a� S) is convex(a�ne) and S �
convS(a� S). It therefore follows from Theorem 2.15(2.16) that T � convS(a� S). Next
we prove that T is convex(a�ne). Let x; y 2 T and put

z = �x + (1� �)y � 2 R:

There are points x1; : : : ; xk, y1; : : : ; ym 2 S and numbers �1; : : : ; �k, �1; : : : ; �m with

x =�1x1 + � � �+ �kxk

�1 + � � �+ �k = 1

y =�1y1 + � � �+ �mym

�1 + � � �+ �m = 1:
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Hence

z = �

kX
i=1

�ixi + (1� �)
mX
j=1

�jyj :

Notice
kX

i=1

��i +
mX
j=1

(1 � �)�j = �+ (1 � �) = 1;

and so z is an a�ne combination of points of S. It follows that T is a�ne. Clearly T � S
and so T � a� S which gives T = a� S. For the convex case, we would have �i � 0, �j � 0
for i = 1; : : : ; k, j = 1; : : : ;m. Then if 0 � � � 1 we have ��i � 0 and (1� �)�j � 0. Hence
T is convex and so T = convS, as above. �

Our �rst major convexity result is the following theorem of Carath�eodory. It shows
that the above result can be improved to the extent that we need only consider convex
combinations of n+ 1 points. We will also see that this is the best possible.

Theorem 2.23 (Carath�eodory). If S is a non-empty subset of En then each point of
convS can be expressed as a convex combination of at most n+ 1 points of S.

Proof. We assume x 2 convS and use Theorem 2.22 to choose points x1; : : : ; xk 2 S and
numbers �1; : : : ; �k such that x = �1x1 + � � �+ �kxk where �1 + � � �+ �k = 1, �i � 0 for all
i = 1; 2; : : : ; k. Our objective is to show that we can make such a choice with k � n+1. We
will achieve this by showing that if k � n + 2 then we could reduce the number of points
x1; : : : ; xk chosen.

Note that, if k � n+ 2 then Theorem 2.18 shows that the points are a�nely dependent.
Consequently, we can choose numbers �1; : : : ; �k, not all zero, such that

�1x1 + � � �+ �kxk = o and �1 + � � � + �k = 0:

Now let t be any number and put

�i = �i + t�i for i = 1; : : : k:

We note that, no matter what the value of t,

�1x1 + � � �+ �kxk = �1x1 + � � �+ �kxk + t(�1x1 + � � �+ �kxk) = x

and
�1 + � � �+ �k = �1 + � � �+ �k + t(�1 + � � �+ �k) = 1:

Now put
t = maxf��i=�i : �i > 0; i = 1; : : : ; kg:

We note that there must be an i with �i > 0 and so t � 0. We also have the following:

a) if �i = 0, then �i = �i + t�i = �i � 0
b) if �i > 0, then �i = �i + t�i � 0
c) if �i < 0, then �i = �i + t�i � �i � 0
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Consequently �i � 0 for i = 1; : : : ; k. Furthermore, there is an i such that �i = 0; namely
the value of i which produces the maximum member of the set

f��i=�i : �i > 0; 1 � i � kg:

Thus x = �1x1 + � � � + �kxk, �i � 0, �1 + � � � + �k = 1 and at least one of the �i's is
zero. Hence x has been written as a convex combination of at most k � 1 points of S. This
completes the proof. �

The number n+ 1 above cannot be reduced. For example, if S comprises three points in
E
2 forming the vertices of a triangle, then the centroid of S cannot be expressed as a convex

combination of fewer than three points of S.

The convex hull of a �nite set of points is called a polytope. If S = fx1; : : : ; xk+1g and
if dima� S = k, then convS is called a k-dimensional simplex or k-simplex. The points
x1; : : : ; xk+1 are its vertices.

Note that a 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex is a triangle,
and a 3-simplex is a tetrahedon.

If S is a k-simplex with vertices x1; : : : ; xk+1 and if x 2 S we know from Theorem 2.22
that there are numbers �1; : : : ; �k+1 such that

x = �1x1 + � � � + �k+1xk+1 �1 + � � �+ �k+1 = 1 �i � 0 1 � i � k + 1:

We will show that these numbers are uniquely determined by x. Assume that we have

x = �1x1 + � � �+ �k+1xk+1 �1 + � � � + �k+1 = 1 �i � 0 1 � i � k + 1:

We put �i = �i � �i for 1 � i � k + 1 and note that

�1 + � � �+ �k+1 = 0:

Furthermore,
�1x1 + � � �+ �k+1xk+1 = o:

However, the fact that dima� S = k shows that the x1; : : : ; xk+1 are a�nely independent.
Consequently �1 = �2 = : : : = �k+1 = 0 and we are �nished.

So we have proved

Theorem 2.25. Let S be a k-simplex in E
n with vertices x1; : : : ; xk+1, then each point of

S has a unique representation as a convex combination of the vertices.

We note that this result is not true in general. For example if x1; : : : ; x4 are the vertices
of a square. Then

1

4
(x1 + � � �+ x4) =

1

2
(x1 + x3) =

1

2
(x2 + x4):

If x1; : : : ; xk+1 are the vertices of a k-simplex and

x = �1x1 + � � �+ �k+1xk+1 �1 + � � �+ �k+1 = 1 �i � 0

then the numbers �1; : : : ; �k+1 are called the barycentric coordinates of x. The centroid of
a k-simplex is the point with barycentric coordinates�

1

k + 1
; � � � ;

1

k + 1

�
:
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Theorem 2.27. Let S be a k-simplex, then relintS 6= �.

Proof. Assume the vertices of S are x1; : : : ; xk+1 and let V = a� S � xk+1 be the subspace
parallel to a� S. Let x0 be the centroid of S. De�ne f : V ! E

k by

f(�1(x1 � xk+1) + � � �+ �k(xk � xk+1) = (�1; : : : ; �k)

and note that f is continuous. Now choose " > 0 so that, if the distance between (�1; : : : ; �k)
and ( 1

k+1
; � � � ; 1

k+1
) 2 Ek is less than " > 0 then the �i are all positive and �1+ � � �+�k < 1.

The continuity of f shows there is a � > 0 such that any point

(�1; : : : ; �k) 2 f(B(x0 � xk+1; �))

satis�es the above condition. It follows that the B(x0; �) � S. Hence x0 2 relintS. �

Corollary 2.28. Let S be a k-dimensional convex subset of En , then relintS 6= �.

Proof. We can choose k+1 a�nely independent points in S. Their convex hull is a k-simplex
T . We have

� 6= relint T � relintS:

�

Theorem 2.29. If S is open then so is convS.

Proof. Assume x 2 convS. We can choose x1; : : : ; xk 2 S and numbers �i � 0 with
�1 + � � �+ �k = 1 and

x = �1x1 + � � �+ �kxk:

Also there is a number � > 0 such that

B(x; �) � S for i = 1; 2; : : : ; k:

If y 2 B(x; �) then y = x+ru where 0 � r < � and kuk = 1. Put yi = xi+ru for i = 1; : : : ; k
note that

�1y1 + � � �+ �kyk = �1x1 + � � �+ �kxk + (�1 + � � �+ �k)ru = x + ru = y:

Now each yi 2 S and so y 2 convS. Hence convS is open. �

We note that the convex hull of a closed set is not necessarily closed. For example if

S = f(x; y) 2 E 2 : x2y2 = 1; x > 0g

then S is closed, but

convS = f(x; y) 2 E2 : x > 0g

which is not closed. However, we have the following theorem.
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Theorem 2.30. If S is compact then so is convS (in E
n).

Proof. Let C be that compact subset of En+1 de�ned by

C = f(�1; : : : ; �n+1) 2 E
n+1 : �1 + � � �+ �n+1 = 1 and �i � 0; 1 � i � n+ 1g:

Note that
E
n+1 � E

n � � � � � E
n| {z }

n+1

= E
(n+1)2 :

De�ne f : E (n+1)
2

! E
n by

f(�1; : : : ; �n+1| {z }
2En+1

; x1|{z}
2En

; x2|{z}
2En

; : : : ; xn+1| {z }
2En

) = �1x1 + �1x2 + � � �+ �n+1xn+1:

It is clear that f is continuous. Furthermore, if S is compact in E
n then C � S � � � � � S| {z }

n+1

is compact in E (n+1)
2

and so f(C � S � � � � � S) is compact. But Caratheodory's theorem
shows that

f(C � S � � � � � S) = convS:

�


