
Convexity Theory I | Class Notes

Section 1. Linear Algebra and Topology

In this section, we will cover some of the basic ideas of linear algebra and topology which
will be used in the remainder of the course. We will work in Euclidean space En . We denote
the inner product of x; y 2 En by hx; yi. In terms of coordinates

hx; yi = x1y1 + : : :+ xnyn

where x = (x1; : : : ; xn) and y = (y1; : : : ; yn). The norm of x is denoted by kxk, and is given
by

kxk =
p
hx; xi

Geometrically, it is the distance from the point x to the origin. We recall that hx; yi =
kxk kyk cos  where  is the angle between the vectors and x and y. In particular, hx; yi = 0
if x and y are orthogonal vectors. The following is a list of simple, but important, facts
about inner products and norms.

a) hx; xi � 0 and hx; xi = 0, x = 0
b) hx; yi = hy; xi
c) hx + y; zi = hx; zi + hy; zi
d) h�x; yi = �hx; yi; if � 2 R
e) kxk > 0 if x 6= 0
f) k�xk = j�j kxk ; if � 2 R

There is one further property, known as the triangle inequality

kx + yk � kxk + kyk :

The key to proving this is Schwarz' inequality

jhx; yij � kxk kyk

which follows from the fact that j cos�j � 1. Schwarz' inequality gives

kx + yk2 = hx+ y; x + yi = kxk2 + kyk2 + 2hx; yi

� kxk2 + kyk2 + 2 kxk kyk = (kxk+ kyk)2:

We already mentioned that the norm measures distances from the origin. In fact, it can be
used to measure any distance. The distance d(x; y) is de�ned by

d(x; y) = kx � yk x; y 2 En :

1



2 x1. LINEAR ALGEBRA AND TOPOLOGY

In terms of coordinates, this is

d(x; y) =

vuut
nX
i=1

(xi � yi)2:

The distance function satis�es

a) d(x; y) > 0 if x 6= y
b) d(x; y) = d(y; x)
c) d(x; y) � d(x; z) + d(z; y) (triangle inequality)
d) d(�x; �y) = j�jd(x; y) � 2 R
e) d(x + z; y + z) = d(x; y)

We now turn to some topological considerations. These will all make use of the distance
function. If x 2 En and � > 0, the open ball B(x; �) is de�ned by

B(x; �) = fy 2 En : d(x; y) < �g:

The point x of a set S in E
n is an interior point if there is a � > 0 such that B(x; �) � S.

A set S is open if each of its points is an interior point. Note that an open ball is open.
(Why?) The collection of all open sets as de�ned above, is referred to as the usual topology

on En . If S is a subset of En , then

fU � S : U = V \ S; where V is open in Eng

is called the relative topology on S. For example, if S � E
2 is de�ned by S = f(x1; x2) :

x1 � 0g, then

G = f(x1; x2) : 0 � x1 < 1; 0 < x2 < 1g

is open in the relative topology of S, but G is not an open set in E2 .
It is important to note the following:

a) the empty set �, and the whole space En are open;
b) any union of open sets is open;
c) any �nite intersection of open sets is open.

Can you give an example of an in�nite collection of open sets whose intersection is not open?
Here is one:

1\
n=1

B(o;
1

n
) n = 1; 2; : : : ;

which is simply fog.
A set S in En is closed if its complement �S = E

n n S is open in En . Note that

a) � and En are closed;
b) all intersections of closed sets are closed;
c) any �nite union of closed sets is closed.
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We have therefore seen that � and E
n are both open and closed. In fact, these are the

only possibilities in En , but we won't prove that. But there are many examples of sets which
are neither open nor closed, for example the set G mentioned previously.

The set S is said to be bounded if there is an x 2 En and a � > 0 such that S � B(x; �).
The interior of a set S is the union of all open sets contained in S; it is denoted by intS.
The closure of a set S is the intersection of all closed sets that contain S; it is denoted by
clS. For example, if S � E

2 is the set of points with rational coordinates then

intS = � clS = E
2

A function f : En ! E
m is continuous if and only if f�1(U) is open in En whenever U is

open in Em . This de�nition is equivalent to the familiar ", � de�nition of continuity. In the
latter, we say that f is continuous at x 2 En if, for every " > 0, there is a � > 0 such that

f(B(x; �)) � B(f(x); "):

Then f : En ! E
m is said to be continuous if it is continuous at each point x 2 En . To see

this equivalence, �rst assume f : En ! E
m is continuous (inverse image de�nition) and let

x 2 En and " > 0. Note that B(f(x); ") is open in Em and therefore f�1(B(f(x); ") is open
in En . Of course x 2 f�1(B(f(x); ")). The de�nition of open set now shows that there is a
� > 0 such that

B(x; �) � f�1(B(f(x); "));

and this is just the statement

f(B(x; �)) � B(f(x); "):

So we have proved that if f is continuous then f is continuous at each x 2 En .

For the converse, we assume f : En ! E
m is continuous at each x 2 E

n (", � de�nition)
and let U be open in Em . We assume that x 2 f�1(U) and aim to �nd a � > 0 such that

B(x; �) � f�1(U):

We have f(x) 2 U and so there is an " > 0 such that B(f(x); ") � U . The continuity of f
at x implies there is a � > 0 with

f(B(x; �)) � B(f(x); "):

In particular,
B(x; �) � f�1(U)

and so f�1(U) is open.

There is a further equivalent de�nition of continuity at x which we will �nd helpful: f
is continuous at x 2 E

n if the sequence (f(xi))1i=1 converges to f(x) in E
m whenever the

sequence (xi)1i=1 converges to x 2 En .
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It is easy to show that the following functions are continuous

a) f : En � E
n ! E

n de�ned by f(x; y) = x + y
b) if a 2 En ; fa : En ! E

n ; de�ned by fa(x) = a + x
c) if � 2 R; f� : En ! E

n ; de�ned by f�(x) = �x
d) if x; y 2 En ; f : R! E

n ; de�ned by f(�) = �x+ (1� �)y

If A;B � E
n and � 2 R, we de�ne

A+B = fx+ y : x 2 A; y 2 Bg

and
�A = f�x : x 2 Ag:

It is unfortunate that, in general,

A+A 6= 2A:

For example, if A = fx; yg � E
2 , then A + A = f2x; x + y; 2yg, whereas 2A = f2x; 2yg. If

A = fxg we write x + B for A +B. This is a translate of B obtained by translating each
point of B by the vector x. It is convenient to note that

A+B =
[
x2A

(x +B) =
[
y2B

(A + y):

Sets of the form x+ �A with � 6= 0 are said to be homothetic to A or homothets of A.
The boundary of A, bdA, is de�ned by

bdA = clA \ cl(�A)

A set K in En is said to be compact if it is closed and bounded.

The following theorem (one of the most signi�cant in mathematics) gives us an equivalent
notion of compactness. It uses the idea of \open cover." A collection of open sets is said
to form an open cover of S if S is contained in the union of the sets of the collection. For
example

fB(x; 1 � 1=n) : n = 2; 3; : : :g

is an open cover of B(x; 1).

Heine-Borel Theorem. The set K � E
n is compact, if and only if every open cover has

a �nite subcover.

Note that the above open cover ofB(x; 1) has no �nite subcover; soB(x; 1) is not compact.

Theorem 1.22. Let f : En ! E
m be continuous and assume K � E

n is compact. Then

f(K) is compact in E
m .

Proof. We assume
F = fF� : � 2 Ag
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is an open cover of f(K), that is

f(K) �
[
�2A

F�:

Each F� is open in Em and so, by continuity of f , each f�1(F�) is open in E
n . Clearly

K �
[
�2A

f�1(F�)

and so we have an open cover of K. We may therefore choose �1; : : : ; �t 2 A such that

K �
t[
i=1

f�1(F�i
):

It follows immediately that

f(K) �

t[
i=1

F�i

and so we have found the required �nite subcover. �

Corollary 1.23. Let K be compact in E
n and assume f : En ! R is continuous. Then

there is an m 2 R such that jf(x)j � m for all x 2 K. Furthermore, there are points

x1; x2 2 K such that

f(x1) = inf
x2K

f(x) f(x2) = sup
x2K

f(x):

Proof. Note that f(K) is a compact subset of R. It is therefore closed and bounded. The
boundedness implies there is an interval [a; b] such that f(K) � [a; b]. If we put m =
maxfjaj; jbjg we have jf(x)j � m for all x 2 K. The boundedness of f(K) also implies that
infx2K f(K) and supx2K f(K) both exist. The fact that f(K) is closed now implies that
both the in�mum and supremum are members of f(K). �


