Notations

GENERAL NOTATIONS

y := 5 + x means that we define y to be equal to 5 + x; the two dots in ":=" are at the side of the object that is being defined.

 \forall means "for each", "for every", "for all".

 \exists means "there exist(s)"; \exists ! means "there exists a unique...".

s.t. means "such that".

Examples:

- $\forall x \ge 0 \exists y \text{ s.t. } y^2 = x$ (Note that y is not unique, i.e., for x = 25, y may be 5 or -5.)
- $\forall x \neq 0 \exists ! y \text{ s.t. } xy = 1$ (Namely, $y = \frac{1}{x}$.)

• By definition, the sequence a_1, a_2, \ldots of real numbers tends to a limit a (notation: $a_n \to_{n\to\infty} a$ or $\lim_{n\to\infty} a_n = a$) if $\forall \epsilon > 0 \exists N \in \mathbb{N}$ s.t. $\forall n > N$, $|a_n - a| < \epsilon$.

Set-theoretic notations

 $A = \{a_1, a_2, \ldots, a_n\}$ means that the set A consists of n elements, namely, a_1, a_2, \ldots, a_n .

Remark: In general, the elements of a set A are not naturally ordered.

 $\{a\}$ is the *set* consisting of one element only (namely, the element a).

|A| (or #A) stands for the *cardinality* of A, i.e., the number of elements in the set A.

Important sets:

- the set of *integers*: $\mathbb{Z} := \{\dots, -2, -1, 0, 1, 2, \dots\}$
- the set of *natural numbers*: $\mathbb{N} := \{1, 2, 3, \ldots\}$
- \bullet the set of real numbers $\mathbb R$
- the set of rational numbers: $\mathbb{Q} := \{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{N} \}$

• intervals of \mathbb{R} : $(a,b) := \{x \in \mathbb{R} : a < x < b\}, (a,b] := \{x \in \mathbb{R} : a < x \le b\}, [a,b) := \{x \in \mathbb{R} : a \le x < b\}, [a,b] := \{x \in \mathbb{R} : a \le x \le b\}$

 B^A stands for the set of all maps (i.e., functions) f from A to B. Note that each element $a \in A$ must go to some $f(a) \in B$, while not all $b \in B$ are necessarily of the form f(a) for some $a \in A$.

Exercise: Prove that for finite sets A and B, $|B^A| = |B|^{|A|}$, and that the number of subsets of the set A is $2^{|A|}$.

Remark: Difference between \in and \subset

- $\omega \in A$ means that ω is an element of the set A.
- $A \subset B$ means that the set A is a subset of the set B (i.e., that each element in A also belongs to B).

Example: $5 \in \mathbb{N}$, but $\{5\} \subset \mathbb{N}$.

LOGIC NOTATIONS

 $(P) \Rightarrow (Q)$ means that the statement (P) implies the statement (Q).

 $(P) \Leftrightarrow (Q)$ means that the statements (P) and (Q) are equivalent.

Examples:

• $(x \in \mathbb{N}) \Rightarrow (x^2 \in \mathbb{N})$ (Clearly, the converse – namely, that $x^2 \in \mathbb{N}$ implies $x \in \mathbb{N}$ – is false.) • $(x > 0) \Leftrightarrow (x^3 > 0)$