Notations

General notations

$y:=5+x$ means that we define y to be equal to $5+x$; the two dots in " $:=$ " are at the side of the object that is being defined.
\forall means "for each", "for every", "for all".
\exists means "there exist(s)"; \exists ! means "there exists a unique...".
s.t. means "such that".

Examples:

- $\forall x \geq 0 \exists y$ s.t. $y^{2}=x \quad$ (Note that y is not unique, i.e., for $x=25, y$ may be 5 or -5 .)
- $\forall x \neq 0 \exists$! y s.t. $x y=1 \quad$ (Namely, $y=\frac{1}{x}$.)
- By definition, the sequence a_{1}, a_{2}, \ldots of real numbers tends to a limit a (notation: $a_{n} \rightarrow_{n \rightarrow \infty} a$ or $\left.\lim _{n \rightarrow \infty} a_{n}=a\right)$ if $\forall \epsilon>0 \exists N \in \mathbb{N}$ s.t. $\forall n>N,\left|a_{n}-a\right|<\epsilon$.

SET-THEORETIC NOTATIONS

$A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ means that the set A consists of n elements, namely, $a_{1}, a_{2}, \ldots, a_{n}$.
Remark: In general, the elements of a set A are not naturally ordered.
$\{a\}$ is the set consisting of one element only (namely, the element a).
$|A|($ or $\# A)$ stands for the cardinality of A, i.e., the number of elements in the set A.

Important sets:

- the set of integers: $\mathbb{Z}:=\{\ldots,-2,-1,0,1,2, \ldots\}$
- the set of natural numbers: $\mathbb{N}:=\{1,2,3, \ldots\}$
- the set of real numbers \mathbb{R}
- the set of rational numbers: $\mathbb{Q}:=\left\{\frac{p}{q}: p \in \mathbb{Z}, q \in \mathbb{N}\right\}$
\bullet intervals of $\mathbb{R}:(a, b):=\{x \in \mathbb{R}: a<x<b\},(a, b]:=\{x \in \mathbb{R}: a<x \leq b\},[a, b):=\{x \in \mathbb{R}: a \leq x<b\}$, $[a, b]:=\{x \in \mathbb{R}: a \leq x \leq b\}$
B^{A} stands for the set of all maps (i.e., functions) f from A to B. Note that each element $a \in A$ must go to some $f(a) \in B$, while not all $b \in B$ are necessarily of the form $f(a)$ for some $a \in A$.
Exercise: Prove that for finite sets A and $B,\left|B^{A}\right|=|B|^{|A|}$, and that the number of subsets of the set A is $2^{|A|}$.

Remark: Difference between \in and \subset

- $\omega \in A$ means that ω is an element of the set A.
- $A \subset B$ means that the set A is a subset of the set B (i.e., that each element in A also belongs to B).

Example: $5 \in \mathbb{N}$, but $\{5\} \subset \mathbb{N}$.

Logic notations

$(\mathrm{P}) \Rightarrow(\mathrm{Q})$ means that the statement (P) implies the statement (Q).
$(\mathrm{P}) \Leftrightarrow(\mathrm{Q})$ means that the statements (P) and (Q) are equivalent.

Examples:

- $(x \in \mathbb{N}) \Rightarrow\left(x^{2} \in \mathbb{N}\right) \quad$ (Clearly, the converse - namely, that $x^{2} \in \mathbb{N}$ implies $x \in \mathbb{N}$ - is false.)
- $(x>0) \Leftrightarrow\left(x^{3}>0\right)$

