
MATH 4073 Homework 7 Due 11/05/09

Problem 1. This problem is about different methods for approximate integration applied to

the integral
∫ π/3

0
tan x dx. In this problem “trapezoidal rule” and “midpoint rule” always refer

to the “simple” rules, i.e., the ones derived in Section 4.3 of the book (not the “composite”
ones discussed in Section 4.4).

(a) Compute by hand the indefinite integral
∫

tan x dx; show me your solution in detail.

Find the exact value of the definite integral
∫ π/3

0
tan x dx.

(b) Is the function tan x increasing on [0, π
3
]? Is it concave up or concave down on [0, π

3
]?

Justify your answers.

(c) Based on your answer in part (b), can you predict whether the trapezoidal rule applied

to
∫ π/3

0
tan x dx will give you a smaller or a larger value than the true value of the

integral (obtained in part (a))? Explain and draw a sketch to support your claim.

(d) Apply the trapezoidal rule to the integral
∫ π/3

0
tan x dx. Does your result agree with

your prediction in part (c)?

(e) Based on your answer in part (b), can you predict whether the midpoint rule applied

to
∫ π/3

0
tan x dx will give you a smaller or a larger value than the true value of the

integral (obtained in part (a))? Explain and draw a sketch to support your claim.

(f) Apply the midpoint rule to the integral
∫ π/3

0
tan x dx. Does your result agree with your

prediction in part (e)?

Problem 2. This problem is about the “simple” (see Section 4.3) and the “composite”
(see Section 4.4) Simpson’s rules for approximate integration applied to the definite integral∫ π/3

0
tan x dx. In some parts of this problem the calculations are long, so Mathematica will

be helpful.

(a) Find the theoretical upper bound on the (absolute) error in applying the “simple”

Simpson’s rule to the integral
∫ π/3

0
tan x dx; you may use that

d4

dx4
tan x =

4(5− cos 2x) tan x

cos4 x
;

one can easily see that this function is increasing on [0, π
3
] by noticing that cos is

decreasing and tan is increasing on this interval. You can use that

d4

dx4
tan x

∣∣∣
x=π

3

= 352
√

3 .
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(b) Compute the approximate value of the definite integral
∫ π/3

0
tan x dx by using the

“simple” Simpson’s rule.

Hint: The stepsize is h = π
6
.

(c) Find the true value of the (absolute) error of the calculation from part (b) (you have
found the true value of the definite integral in Problem 1(a)). Compare it with the
rigorous bound obtained in part (a).

(d) Now you will apply the composite Simpson’s rule to compute the approximate value of∫ π/3

0
tan x dx by dividing the interval [0, π

3
] into n = 4 equal-size subintervals. What is

the value of h? Use that the composite Simpson’s rule for n equal subintervals is (see
Section 4.4)

∫ b

a

f(x) dx =
h

3

f(x0) + 2

(n/2)−1∑
j=1

f(x2j) + 4

n/2∑
j=1

f(x2j−1) + f(b)

− b− a

180
h4f (4)(µ) ,

where µ is some (unknown) value in [0, π
3
], to give a rigorous upper bound on the

(absolute) error in the computation of the integral by applying the composite Simpson’s
rule with n = 4.

Hint: In this case h = π
12

. You can use that tan π
12

= 2−
√

3.

(e) Compute the approximate value of the integral
∫ π/3

0
tan x dx by using the formula from

part (d).

(f) What is the true value of the (absolute) error in the calculation from part (e)? Compare
it with the rigorous bound from part (d).

(g) Finally, recall that in the process of deriving the composite Simpson’s rule, we had
that the error was equal to

−h5

90

n/2∑
j=1

f (4)(ξj) ,

where ξj ∈ [x2j−2, x2j]; we used this expression and the Extreme and Intermediate
Value Theorems to derive the bound given in part (d). In fact, the more complicated
expression given here gives a better bound (but is not used very often because it is more
complicated). Explain why this rigorous upper bound is tighter, i.e., smaller (think
about the derivation of the simplified bound in class). Then apply the expression
written here to obtain a better rigorous upper bound on the error in your computation
from part (e). Compare it with the rigorous upper bound obtained in part (d). Here
are some useful values:

d4

dx4
tan x

∣∣∣
x=π

3

= 352
√

3 ,
d4

dx4
tan x

∣∣
x=π

6

=
32√

3
.
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Problem 3. In this problem you will study empirically how the true errors in the composite
trapezoidal and Simpson’s rules depend on the stepsize h = b−a

n
in computing the definite

integral
∫ b

a
f(x) dx. As an example, you will use

∫ π/3

0
tan x dx (whose exact value was found

in Problem 1(a)).

Let En be the absolute error in the calculation, i.e., the absolute value of the difference
between the exact value of the integral and the approximate value computed by dividing the
interval [a, b] into n subintervals of equal size.

(a) If En ≈ C hα for some constant C > 0 and some value of α, then what is the (approxi-
mate) dependence of En on n? If you plot ln En versus ln n, then the points (ln n, ln En)
will be approximately on a straight line. What is the slope of this straight line? Prove
your claim.

(b) Show that if En ≈ C hα, then

ln
En

E2n

≈ α ln 2 .

(c) The Matlab code comp_trap.m (on the class web-site) implements the composite trape-

zoidal rule. Use it to compute the approximate values of
∫ π/3

0
tan x dx with n = 16,

32, 64, 128, 256, and 512, and the corresponding absolute errors.

(d) Use your data from part (c) and the formula obtained in part (b) to find the value
of α for the composite trapezoidal rule. What value of α did you expect, and why?
Compare it with the empirically obtained value. Discuss briefly.

(e) The Matlab code comp_simp.m (on the class web-site) implements the composite Simp-

son’s rule. Use it to compute the approximate values of
∫ π/3

0
tan x dx with n = 16, 32,

64, 128, 256, and 512, and the corresponding absolute errors.

(f) Use your data from part (e) and the formula obtained in part (b) to find the value of α
for the composite Simpson’s rule. What value of α did you expect, and why? Compare
it with the empirically obtained value. Discuss briefly.
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