

Nowcasting Rotating Storms

Mathematical Geo-Science research group

Members: Prof. Meijun Zhu, Department of Mathematics

Prof. Yang Hong, civil engineering & national weather center

Dr. Valliappa Lakshmanan, Research scientist, NWC

Dr. Pengfei Zhang, Research Scientist, NWC

Postdoc (Sheng Chen), students (Kesong Cheng, JunJun Hu)

Rotating tropical storms

Hurricane Ike makes a landing at Houston, TX, Sept. 13, 2008.

Linear extrapolation?

Synthetic rigid motion

Tracking motion via linear extrapolation

Difficulty

 Hard to capture rotating and translation simultaneously from remotely sensed data. Very few results concerning the rotating in nowcasting (short-term forecasting).

Assumption: Rigid motions.

1

Understanding rigid motion

Rigid motion from (a) to (b):

(I) Rotating, then shifting:

(II) A simple rotating:

Mathematically:

T is a rigid transformation:

$$TX = A(X - C) + D = A(X - S).$$

$$A(\theta) = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}, \qquad S = c - A^{-1}d := \begin{pmatrix} s_1 \\ s_2 \end{pmatrix}.$$

C---Rotating center, S---Motion center Not unique

Unique, so is the angle

Strategy

Step 1: Find the unique angle.

Angle of motion.

Step 2: Find the unique center for the motion.

Center of motion.

Method

 Find the angle and center for simple image: Two-point rotating model. For complicated images: Active contour for catching characteristics (not necessarily the edges).

•

Two-point rotating model:

Vector rotating

$$\mathbf{X} \cdot \mathbf{Y} = |\mathbf{X}| \cdot |\mathbf{Y}| \cdot \cos(\theta_*)$$
$$\theta_* = \cos^{-1} \frac{\mathbf{X} \cdot \mathbf{Y}}{|\mathbf{X}| \cdot |\mathbf{Y}|}.$$

$$A(\theta_*) = \begin{pmatrix} \cos \theta_* & \sin \theta_* \\ -\sin \theta_* & \cos \theta_* \end{pmatrix}.$$

$$S = (A_* - id)^{-1} \cdot (A_* P_1 - Q_1), \text{ or } S = (A_* - id)^{-1} \cdot (A_* P_2 - Q_2).$$

Centroid:

$$x_{c} = \frac{\int_{\Omega} x f(x, y) dx dy}{\int_{\Omega} dx dy},$$

$$x_c = \frac{\int_{\Omega} x f(x, y) dx dy}{\int_{\Omega} dx dy}, \qquad y_c = \frac{\int_{\Omega} y f(x, y) dx dy}{\int_{\Omega} dx dy}.$$

First characteristics: (a), (b) yield P1, Q1.

Second characteristics: (c), (d) yield P2, Q2.

Two characteristics:

Rotating 180° or no rotating at all:

Recall the synthetic motion

Results

Not for tracking!

As rotating speed/shifting speed becomes smaller, the difference between the center of motion and the center of rotating gets larger.

Computing motion center and rotating angle

Position	Motion center1	Motion center2	Angle
1	(198.8864,388.3416)	(200.5,388.2728)	4.88
2	(203.4712,388.7125)	(201.5,388.9712)	5.19
3	(218.3488,375.2252)	(215.3025,375.895)	4.65
4	(223.9468,391.9682)	(225.6064,391.4468)	5.43
5	(227.3262,381.7578)	(228.8984,381.1016)	5.00
6	(231.2535,371.1436)	(231.9965,370.7553)	4.87
7	(236.1746,383.6634)	(233.8603,385.1397)	5.01
8	(246.4136,377.4045)	(247.2037,376.7963)	5.10
9	(249.1863,369.2876)	(252.3137,366.415)	4.86
10	(259.1863,366.2876)	(256.3137,369.415)	4.86

Nowcasting

Real images

1. Extract intrinsic characteristics of an image

2. Compute the center of mass, then the angle of motion, and the center of motion.

Static images

First characteristics

Second characteristics

How we do that.

Active contour. Similar to Chan-Vese model:

$$I_{1}(C, c_{1}, c_{2}) := \int_{inside(C)} |u_{0} - c_{1}|^{2} dxdy + \int_{outside(C)} |u_{0} - c_{2}|^{2} dxdy + \mu \cdot (length(C)) + \nu \cdot (Area(inside(C))).$$

Using level-set method:

$$\begin{cases} \frac{\partial \Phi}{\partial t} = \mathcal{S}(\Phi) \{ \mu \cdot div(\frac{\nabla \Phi}{|\nabla \Phi|}) - \nu - (u_0 - c_1(\Phi))^2 + (u_0 - c_2(\Phi))^2 \} & in \quad \Omega \times (0, \infty), \\ \Phi(x, y, 0) = \Phi_0(x, y) & in \quad \Omega, \\ \frac{\mathcal{S}(\Phi)}{|\nabla \Phi|} \frac{\partial \Phi}{\partial n} = 0 & on \quad \partial \Omega \times (0, \infty) \end{cases}$$

Our model

Energy functional: M=max u₀

$$I_{our}(C,c) := \int_{inside(C)} |u_0 - \alpha \cdot M|^2 dxdy + \int_{outside(C)} |u_0 - c|^2 dxdy + \mu \cdot (length(C)) + \nu \cdot (Area(inside(C))).$$

Level-set approach:

$$\begin{split} J_{our}(\Phi,c) &:= \int_{\Omega} |u_0 - \alpha \cdot M|^2 \ H(\Phi(x,y)) dx dy + \int_{\Omega} |u_0 - c|^2 \ (1 - H(\Phi(x,y))) dx dy \\ &+ \mu \int_{\Omega} \delta(\Phi(x,y)) \left| \nabla \Phi(x,y) \right| dx dy + \nu \int_{\Omega} H(\Phi(x,y)) dx dy, \end{split}$$

Flow equation

$$\begin{cases} \frac{\partial \Phi}{\partial t} = \delta_{\varepsilon}(\Phi) \{ \mu \cdot div(\frac{\nabla \Phi}{|\nabla \Phi|}) - v \\ -(u_{0} - \alpha \cdot M)^{2} + (u_{0} - c(\Phi))^{2} \} & in \quad (0, \infty) \times \Omega, \\ \Phi(x, y, 0) = \Phi_{0}(x, y) & in \quad \Omega, \\ \frac{\delta_{\varepsilon}(\Phi)}{|\nabla \Phi|} \frac{\partial \Phi}{\partial n} = 0 & on \quad \partial \Omega. \end{cases}$$

Catch the first characteristic

$$\alpha = 0.2$$
.

Catch the second characteristic

$$\alpha = 1.0$$
.

Why new model?

More efficient to skip radar noise:

Original image

Our segmentation

CV-segmentation

Hurricane Bill approaches Florida coast, August 17-19, 2009

First characteristic images

Alpha=0.9

Second characteristics

Alpha=0.7

Hurricane Bill approaches Florida coast, August 17-19, 2009

Computing the motion center and angle

Time	UT1702	UT1708	UT1714	UT1720	UT1802	UT1808	UT1814
Rotating angle	9.087668	9.643614	14.33013	6.851278	11.9749	17.34119	10.70173
angic	9.007 000	9.043014	14.55015	0.031270	11.9749	17.54119	10.70173
Time	UT1814	UT1820	UT1902	UT1908	UT1914	UT1920	UT2002
Rotating	40.70470	0.470046	0.7000	40.05407	0.770047	7.0475	F 7000F0
angle	10.70173	9.476946	2.7636	19.95497	9.770217	7.0175	5.788656

Strong points and weak points

- First work in this area.
- Works almost perfectly for rigid motions

- Other motion (affine motion)?
- Other ways to catch two characteristics? (More stable, more automatically, faster.)

Mathematical questions:

Long time existence of the heat equation.

- Stability of the solution w.r.t. parameter and initial images.
- Convergence for numerical computations (CFL type condition).