- 1. Find the splitting field of $x^3 1$ over \mathbb{Q} . Express your answer in the form $\mathbb{Q}(a)$.
- 2. a) Describe the elements of Q(π).
 b) Let F = Q(π³). Find a basis of F(π) over F.
- 3. Show that $\mathbb{Q}(\sqrt{2})$ is not ring isomorphic to $\mathbb{Q}(\sqrt{3})$.
- 4. Find all the ring automorphisms of $\mathbb{Q}(\sqrt[3]{5})$.
- 5. a) Find the degree and a basis for Q(√3 + √5) over Q(√15).
 b) Find the degree of Q(√3 + √5) over Q.
- 6. If v is algebraic over K(u) for some $u \in F$ and v is transcendental over K, then u is algebraic over K(v).
- 7. If $u \in F$ is algebraic of odd degree over K, then so is u^2 and $K(u) = K(u^2)$.