Test II

MATH 5353

November 29, 2004

- 1. If H is a finite index subgroup in a group G, prove that there is a subgroup N of G contained in H and of finite index in G such that $aNa^{-1} = N$ for all $a \in G$.
- 2. If N is a normal subgroup of a group G, N is finite, H is a subgroup of G of finite index and the index [G:H] and the order |N| are relatively prime, prove that $N \subset H$.
- 3. Let $\alpha = (12)(34)$ and $\beta = (24)$. Show that the group generated by α and β is isomorphic to D_4 .
- 4. For each bilinear symmetric function $\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ below given by its matrix in the standard basis determine the dimension of the kernel and the maximal dimension of a subspace on which the function is positive definite.

a)
$$\begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$$

b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
c) $\begin{pmatrix} 1 & -3 \\ -3 & 2 \end{pmatrix}$

- 5. Consider $V = \mathbb{C}$ as a vector space of dimension 2 over \mathbb{R} .
 - a) Show that $\alpha : \mathbb{C} \times \mathbb{C} \to \mathbb{R}$ given by $\alpha(z, w) = Re(z\overline{w})$ is a positive definite bilinear symmetric function.
 - **b)** Let $z \in \mathbb{C}$ and $L_z : \mathbb{C} \to \mathbb{C}$ be the map $w \to zw$. What is the matrix of L_z with respect to the basis (1, i) of \mathbb{C} over \mathbb{R} ?
 - c) For which complex numbers z do we have $\alpha(L_z(w_1), L_z(w_2)) = \alpha(w_1, w_2)$ for any $w_1, w_2 \in \mathbb{C}$?