Review Problems for Test 1

MATH 2443-006, Spring 04

- 1. Let $f(x,y) = \sqrt{36 4x^2 9y^2}$
 - a) Describe and sketch the domain of f.
 - b) Since P(-1/2, 1) is in the domain, there is a level curve for f at C which passes through P. Find the value C.
- 2. Find the limit or show that it does not exist
 - a) $\lim_{(x,y)\to(0,0)} \frac{(x-y)^2}{x^2+y^2}$ b) $\lim_{(x,y)\to(0,0)} \frac{x^3+y^3}{x^2+y^2}$
- 3. Use linear approximation to approximate a suitable function f(x, y)and thereby estimate the following

 $(0.99e^{0.02})^8$

- 4. Consider the surface xyz = 30
 - a) Find the plane tangent to the surface at the point (2,3,5)
 - b) Give a parametric equation for the line normal to the surface at (2,3,5)
- 5. Given $z = e^r \cos \theta$, r = st, $\theta = \sqrt{s^2 + t^2}$, find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.
- 6. Find the maximum rate of change of $f(x, y) = x^2y + y^2z$ at the point P(1, 2, -1) and the direction in which it occurs.
- 7. Compute the derivative of $f(x, y, z) = e^x + yz$ at P(1, 1, 1) in the direction of $\mathbf{v} = (1, -1, 1)$.
- 8. Find the local maximum and minimum values and saddle points of the function $f(x, y) = 4xy + 2x^2y xy^2$.

- 9. Find the absolute maximum and minimum of $f(x,y) = y\sqrt{x} y^2 x + 6y$ on the rectangle $0 \le x \le 9, 0 \le y \le 5$.
- 10. Find 3 positive numbers whose sum is 100 and whose product is a maximum.
- 11. Use Lagrange multipliers to find the maximum and minimum values of the function $f(x, y) = x^2 + y^2$ subject to the constraint $x^4 + y^4 = 1$.