Review Problems for Test 1

MATH 2443-006, Spring 04

1. Let $f(x, y)=\sqrt{36-4 x^{2}-9 y^{2}}$
a) Describe and sketch the domain of f.
b) Since $P(-1 / 2,1)$ is in the domain, there is a level curve for f at C which passes through P. Find the value C.
2. Find the limit or show that it does not exist
a) $\lim _{(x, y) \rightarrow(0,0)} \frac{(x-y)^{2}}{x^{2}+y^{2}}$
b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y^{2}}$
3. Use linear approximation to approximate a suitable function $f(x, y)$ and thereby estimate the following

$$
\left(0.99 e^{0.02}\right)^{8}
$$

4. Consider the surface $x y z=30$
a) Find the plane tangent to the surface at the point $(2,3,5)$
b) Give a parametric equation for the line normal to the surface at $(2,3,5)$
5. Given $z=e^{r} \cos \theta, r=s t, \theta=\sqrt{s^{2}+t^{2}}$, find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.
6. Find the maximum rate of change of $f(x, y)=x^{2} y+y^{2} z$ at the point $P(1,2,-1)$ and the direction in which it occurs.
7. Compute the derivative of $f(x, y, z)=e^{x}+y z$ at $P(1,1,1)$ in the direction of $\mathbf{v}=(1,-1,1)$.
8. Find the local maximum and minimum values and saddle points of the function $f(x, y)=4 x y+2 x^{2} y-x y^{2}$.
9. Find the absolute maximum and minimum of $f(x, y)=y \sqrt{x}-y^{2}-$ $x+6 y$ on the rectangle $0 \leq x \leq 9,0 \leq y \leq 5$.
10. Find 3 positive numbers whose sum is 100 and whose product is a maximum.
11. Use Lagrange multipliers to find the maximum and minimum values of the function $f(x, y)=x^{2}+y^{2}$ subject to the constraint $x^{4}+y^{4}=1$.
