Review problems for Test I

MATH 2433-005, Spring 2005

1. Find an equation of the tangent to the curve $x=2 \sin 2 t, y=2 \sin t$ at the point $(\sqrt{3}, 1)$.
2. Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ for the curve $x=t+\ln t, y=t-\ln t$. For which values of t is the curve concave upward?
3. Find the points on the curve $x=10-t^{2}, y=t^{3}-12 t$ where the tangent is horizontal or vertical.
4. Find the length of the curve
a) $x=\frac{t}{1+t}, y=\ln (1+t), 0 \leq t \leq 2$
b) $x=e^{t}+e^{-t}, y=5-2 t, 0 \leq t \leq 3$
5. Identify the curve $r=2 \sin \theta+2 \cos \theta$ by finding the Cartesian equation for it.
6. Find polar coordinates of the points given with Cartesian coordinates $(-1,-\sqrt{3}),(-2,3)$.
7. Find the slope of the tangent line to the polar curve $r=\ln \theta$ at the point $\theta=e$.
8. Find the area of the region enclosed by one loop of $r=4 \sin 2 \theta$.
9. Determine whether the series is convergent or divergent. If convergent, find its sum.
a) $\sum_{n=1}^{\infty} \frac{(-4)^{n-1}}{7^{n}}$
b) $\sum_{n=1}^{\infty} \frac{(-6)^{n-1}}{5^{n-1}}$
c) $\sum_{n=1}^{\infty} \ln \left(\frac{5 n^{2}}{n^{2}+n}\right)$
d) $\sum_{n=1}^{\infty} \frac{4^{n}-3^{n}}{9^{n}}$
10. Determine whether the series is convergent or divergent
a) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$
b) $\sum_{n=1}^{\infty} \frac{1+\sin n}{10^{n}}$
c) $\sum_{n=2}^{\infty} \frac{\sqrt{n}}{n-1}$
d) $\sum_{n=1}^{\infty} \frac{2 n^{2}+7 n}{3^{n}\left(n^{2}+5 n-1\right.}$
