Review problems for Test II

MATH 2433-005, Spring 2005

1. Find the radius and the interval of convergence of the power series
a) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}(x+4)^{n}$
b) $\sum_{n=1}^{\infty} \frac{6^{-n}}{n} x^{n}$
2. Express the function as a power series
a) $\frac{1}{1-2 x}$
b) $\frac{1}{(1-2 x)^{2}}$
c) $\frac{x^{2}}{(1-2 x)^{2}}$
3. Find the Taylor series for $f(x)=\sin x$ at $a=\pi / 2$. What is the radius of convergence of this series?
4. a) Approximate $f(x)=\ln (1+2 x)$ by $3^{r d}$ degree Taylor polynomial T_{3} at $a=1$.
b) Use Taylor's Inequality to estimate the accuracy of the approximation on the interval $0.5 \leq x \leq 1.5$.
5. For a certain power series $\sum c_{n} x^{n}$, it is known that $\sum c_{n}$ is convergent.
a) If $\sum(-1)^{n} c_{n}$ is divergent, what can be said about the radius of convergence of this series?
b) If $\sum(-2)^{n} c_{n}$ is divergent, what can be said about the radius of convergence?
6. If $\mathbf{a}=<-3,-4,-1>$ and $\mathbf{b}=<6,2,-3>$, find $|\mathbf{a}|, \mathbf{a}+\mathbf{b}, 3 \mathbf{a}+4 \mathbf{b}$, $\mathbf{a} \cdot \mathbf{b}, \cos \theta$, and $\mathbf{a} \times \mathbf{b}$.
7. Find the unit vector in the direction of $\mathbf{a}=8 \mathbf{i}-\mathbf{j}+2 \mathbf{k}$.
8. Determine whether the given vectors are orthogonal, parallel or neither
a) $\mathbf{a}=\langle 4,6\rangle, \mathbf{b}=\langle-3,2\rangle$
b) $\mathbf{a}=-\mathbf{i}+2 \mathbf{j}+4 \mathbf{k}, \mathbf{b}=2 \mathbf{i}-4 \mathbf{j}-8 \mathbf{k}$
9. Find a unit vector orthogonal to $\mathbf{i}+2 \mathbf{j}$ and $\mathbf{j}+2 \mathbf{k}$.
10. Find the area of a parallelogram with vertices $A(0,1,2), B(0,2,5)$, $C(2,7,5)$ and $D(2,6,2)$.
