Review problems for Test II

MATH 2433-005, Spring 2005

- 1. Find the radius and the interval of convergence of the power series
 - a) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} (x+4)^n$ b) $\sum_{n=1}^{\infty} \frac{6^{-n}}{n} x^n$
- 2. Express the function as a power series
 - a) $\frac{1}{1-2x}$ b) $\frac{1}{(1-2x)^2}$ c) $\frac{x^2}{(1-2x)^2}$
- 3. Find the Taylor series for $f(x) = \sin x$ at $a = \pi/2$. What is the radius of convergence of this series?
- 4. a) Approximate $f(x) = \ln(1+2x)$ by 3^{rd} degree Taylor polynomial T_3 at a = 1.
 - b) Use Taylor's Inequality to estimate the accuracy of the approximation on the interval $0.5 \le x \le 1.5$.
- 5. For a certain power series $\sum c_n x^n$, it is known that $\sum c_n$ is convergent.
 - a) If $\sum (-1)^n c_n$ is divergent, what can be said about the radius of convergence of this series?
 - b) If $\sum (-2)^n c_n$ is divergent, what can be said about the radius of convergence?
- 6. If $\mathbf{a} = \langle -3, -4, -1 \rangle$ and $\mathbf{b} = \langle 6, 2, -3 \rangle$, find $|\mathbf{a}|$, $\mathbf{a} + \mathbf{b}$, $3\mathbf{a} + 4\mathbf{b}$, $\mathbf{a} \cdot \mathbf{b}$, $\cos \theta$, and $\mathbf{a} \times \mathbf{b}$.
- 7. Find the unit vector in the direction of $\mathbf{a} = 8\mathbf{i} \mathbf{j} + 2\mathbf{k}$.
- 8. Determine whether the given vectors are orthogonal, parallel or neither

- a) a = < 4, 6 >, b = < -3, 2 >
- b) a = -i + 2j + 4k, b = 2i 4j 8k
- 9. Find a unit vector orthogonal to $\mathbf{i} + 2\mathbf{j}$ and $\mathbf{j} + 2\mathbf{k}$.
- 10. Find the area of a parallelogram with vertices A(0,1,2), B(0,2,5), C(2,7,5) and D(2,6,2).