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1 The Problem

Many industrial processes are carried out by computer-controlled robots.
The design and control of robots is the subject of a discipline called robotics,
which makes heavy use of mathematics, including calculus. We will discuss
the control of motion of a very simple 2-dimensional, 2-joint robot arm.
There are few, if any, mechanisms of this type. However, the concepts
we will develop in this simple example are quite similar to those one must
wrestle with for more realistic robots.

The planar robot has two links, each of which is a line segment. Point
B, the base of the robot is fixed. The first link rotates around point B, and
the second link rotates with respect to the first around point C. The entire
motion of the robot takes place in the plane. In this plane we will choose
a coordinate system whose origin is at B, and whose positive x-axis points
to the right. The angle θ1 between the positive x-axis and link 1, and the
angle θ2 between links 1 and 2, are both controlled by the robot’s computer.

The part of the robot which does useful work is at the tip, called the
end effector. One might imagine a drill or gripper or paint sprayer attached
there. Usually, a particular point D on the end effector is singled out for
attention. The key problem in robotics is ”How to move the end effector
in its work area?” We cannot control the end effector directly; instead we
must control the angles θ1 and θ2 so as to create the desired motion at the
end effector. This is a problem for calculus.

2 The Kinematic Equations

We will start with a static problem: given particular values for θ1 and θ2,
what are the resulting values for xD and yD, the coordinates of the end
effector point D? This is called the forward kinematic problem.
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Let us suppose that the lengths of links 1 and 2 are l1 and l2 respectively.
We first find the coordinates xC and yC of point C:

xC = l1 cos θ1, yC = l1 sin θ1 (1)

The coordinates of the point D are then obtained:

xD = l1 cos θ1 + l2 cos(θ1 + θ2)

yD = l1 sin θ1 + l2 sin(θ1 + θ2) (2)

Robots usually have measuring devices to measure the angles at the joints.
From these angles, and knowing l1 and l2, the robots computer can use equa-
tions (2) to calculate the position of the end effector at any given instant.

Often we want to turn the forward kinematic process around: given a
point (x, y) in the robot’s work area, what values of θ1 and θ2 are required
to put the end effector at (x, y)? The answer is provided by inverse kine-

matic equations. There are normally two possible solutions, one called elbow

regular with θ2 > 0, and the other called elbow irregular with θ2 < 0.

EXERCISES:

1. Describe the work area, i.e. the region of the plane which can be
reached by the end effector a) when l1 > l2, b) when l1 < l2.

2. Derive the inverse kinematic equations. Here is a suggested path.

• In equations (2) solve for cos(θ1 + θ2) and sin(θ1 + θ2), substitute
solutions into sin2(θ1 + θ2) + cos2(θ1 + θ2) = 1, and simplify to get

y sin θ1 + x cos θ1 = A,

where A =
x2+y2+l2

1
−l2

2

2l1
.

• Solve the above equation along with sin2 θ1 + cos2 θ1 = 1, getting

cos θ1 =
Ax ± y

√

x2 + y2 − A2

x2 + y2

Note that because cos θ1 = cos(−θ1) this usually gives four possible values
for θ1. One corresponds to the elbow regular position, one to the elbow
irregular position, and two are extraneous roots. Once θ1 is determined, it
is easy to find θ2 using equations (2).
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3 Velocity Control

Suppose we have a point T = (x, y) in mind and we wish the end effector to
pass through it with certain horizontal and vertical velocities. The way to
think about it mathematically is to imagine the end effector moving along
a curve parameterized by time t. In other words, the curve γ is specified by
two functions x(t) and y(t), which give the coordinates of the end effector
at time t. A familiar result from calculus is that the velocity vector of the
end effector at time t is the tangent vector γ ′ = (x′(t), y′(t)).

For example, suppose we are washing a vertical window. We would like
there to be no motion in the x-direction, i.e. x′(t) = 0. We want to be sure
the vertical velocity is not too fast, so the window really gets clean, and not
too slow so the job doesn’t take longer than it has to. For example, suppose
we want to be moving upward at one foot per second, i.e. y′(t) = 1.

With x, y, θ1, θ2 written as functions of time, we can differentiate the
equations (2) with respect to t to get

x′ = −l1 sin(θ1)θ
′

1 − l2 sin(θ1 + θ2)(θ
′

1 + θ′2)

y′ = l1 cos(θ1)θ
′

1 + l2 cos(θ1 + θ2)(θ
′

1 + θ′2)

Doing a little algebra and using equations (2), this can be simplified to

x′ = −yθ′1 − l2 sin(θ1 + θ2)θ
′

2

y′ = xθ′1 + l2 cos(θ1 + θ2)θ
′

2 (3)

In our window-washing example, x′ and y′ have been chosen to be 0 and 1.
The point (x, y) is known, so we can apply the inverse kinematic equations
to find θ1 and θ2. Hence he only unknowns in (3) are θ′1 and θ′2, and we will
be able to solve for them.

For example, if l1 = 3.0, l2 = 2.0, x = 4.0531, y = 1.6037 then the
inverse kinematic equations would give (Exercise 3)

θ1 = 0.7854rad(45◦), θ2 = −1.0472rad(−60◦)

This is elbow irregular configuration. Then we obtain the following system
of equations for the angle velocities:

0 = −1.6037θ′1 + 0.5176θ′2

1 = 4.0531θ′1 + 1.9318θ′2

Solving this system gives θ′1 = 0.0996rad/sec, θ′2 = 0.3086rad/sec.
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EXERCISES:

3. Use the result of Exercise 2 to verify the values of θ1 and θ2 for the
elbow irregular position in the vertical window-washing example.

4. Use the result of Exercise 2 to find the values of θ1 and θ2 for the
elbow regular position for the same example. (Drawing a careful picture
will help pick out the correct value for θ1.) Solve for the values of θ′1 and θ′2
needed to get the motion x′ = 0, y′ = 1 in the elbow regular position.
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