Review for Midterm II

MATH 2433-003, Honors

- 1. Test for convergence
 - a) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\ln n}{n}$ b) $\sum_{n=0}^{\infty} \frac{\cos(n\pi/3)}{n!}$ c) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$

 - d) $\sum_{n=1}^{\infty} (\frac{n}{n+1})^{n^2}$
- 2. Find the radius of convergence and the interval of convergence of the power series
 - **a)** $\sum_{n=1}^{\infty} \frac{(3x-2)^n}{n3^n}$
 - **b)** $\sum_{n=1}^{\infty} \frac{(x+1)^n}{n(n+1)}$
- 3. Use a power series to approximate the definite integral to 2 decimal places

$$\int_0^1 \frac{dx}{1+x^4}$$

- 4. a) Find Taylor series for $f(x) = \cos x$ at $a = \pi/4$.
 - **b**) Find the radius of convergence of the series in a).
 - **b)** Show that the Taylor series represent $f(x) = \cos x$.
- 5. Find the Maclaurin series for $\ln(1+x)$ and use it to calculate $\ln 1.1$ correct to two decimal places.
- 6. Find an equation of a sphere that passes through the origin and whose center is (1, 2, 3).
- 7. Let $\mathbf{a} = (1, -1, 2)$, $\mathbf{b} = (3, 0, -2)$. Find $|\mathbf{a}|$, angle θ between \mathbf{a} and \mathbf{b} , $2\mathbf{a} - \mathbf{b}, \mathbf{a} \cdot \mathbf{b}, \mathbf{a} \times \mathbf{b}, comp_{\mathbf{b}}\mathbf{a}.$
- 8. Find a unit vector that is orthogonal to both $\mathbf{i} + \mathbf{j}$ and $\mathbf{i} + \mathbf{k}$.

9. Find a vector orthogonal to the plane through the points P(1, 0, -1), Q(2, 4, 5), R(3, 1, 7) and the area of the triangle PQR.