Review for Midterm II

MATH 2433-003, Honors

1. Test for convergence
a) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{\ln n}{n}$
b) $\sum_{n=0}^{\infty} \frac{\cos (n \pi / 3)}{n!}$
c) $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$
d) $\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n^{2}}$
2. Find the radius of convergence and the interval of convergence of the power series
a) $\sum_{n=1}^{\infty} \frac{(3 x-2)^{n}}{n 3^{n}}$
b) $\sum_{n=1}^{\infty} \frac{(x+1)^{n}}{n(n+1)}$
3. Use a power series to approximate the definite integral to 2 decimal places

$$
\int_{0}^{1} \frac{d x}{1+x^{4}}
$$

4. a) Find Taylor series for $f(x)=\cos x$ at $a=\pi / 4$.
b) Find the radius of convergence of the series in a).
b) Show that the Taylor series represent $f(x)=\cos x$.
5. Find the Maclaurin series for $\ln (1+x)$ and use it to calculate $\ln 1.1$ correct to two decimal places.
6. Find an equation of a sphere that passes through the origin and whose center is $(1,2,3)$.
7. Let $\mathbf{a}=(1,-1,2), \mathbf{b}=(3,0,-2)$. Find $|\mathbf{a}|$, angle θ between \mathbf{a} and \mathbf{b}, $2 \mathbf{a}-\mathbf{b}, \mathbf{a} \cdot \mathbf{b}, \mathbf{a} \times \mathbf{b}, \operatorname{comp}_{\mathbf{b}} \mathbf{a}$.
8. Find a unit vector that is orthogonal to both $\mathbf{i}+\mathbf{j}$ and $\mathbf{i}+\mathbf{k}$.
9. Find a vector orthogonal to the plane through the points $P(1,0,-1)$, $Q(2,4,5), R(3,1,7)$ and the area of the triangle $P Q R$.
