Review for Midterm I

MATH 2433-003, Honors

- 1. A cycloid is given by parametric equations $x = r(\theta \sin \theta), y = r(1 \cos \theta)$ (r is a fixed number)
 - a) Find the tangent to the curve at $\theta = \pi/3$.
 - **b**) Find the length of one arc of the cycloid.
 - c) Find the area of the region bounded by one arc of the cycloid and the *x*-axis.
- 2. Show that $x = \cos t$, $y = \sin t \cos t$ has two tangents at (0,0) and find their equations.
- 3. The curve is given by a polar equation $r = \sin 2\theta$.
 - a) Sketch the curve.
 - **b)** Find the slope of the tangent to this curve at $\theta = \pi/4$.
 - c) Find the area of the region enclosed by one loop of the curve.
 - d) Find the length of one loop.
- 4. Find the foci and vertices and sketch the graph
 - a) $4x^2 y^2 = 16$
 - **b)** $6y^2 + x 36y + 55 = 0$
- 5. Find an equation of the ellipse with foci $(3, \pm 2)$ and major axis with length 8.
- 6. Determine if the sequence converges or diverges. If converges, find the limit.
 - **a)** $a_n = \frac{\sqrt{n}}{1+\sqrt{n}}$
 - **b)** $a_n = \sin(n\pi/2)$
 - c) $a_n = \ln(n+1) \ln n$

- 7. Show that the sequence defined by $a_1 = 1$, $a_{n+1} = 3 \frac{1}{a_n}$ is increasing and bounded above by 3. Deduce that $\{a_n\}$ is convergent and find its limit.
- 8. Determine if the series is convergent or divergent.

 - **a)** $\sum_{n=1}^{\infty} \frac{(-6)^{n-1}}{37^n}$ **b)** $\sum_{n=1}^{\infty} \frac{\arctan}{1+n^2}$

 - c) $\sum_{n=1}^{\infty} \frac{1}{n \ln^2 n}$ d) $\sum_{n=1}^{\infty} \frac{1}{n^3 + n + 11}$ e) $\sum_{n=1}^{\infty} \frac{n+5}{\sqrt{n^5 + n^2}}$
- 9. Show that if $a_n > 0$ and $\lim_{n \to \infty} na_n \neq 0$, then $\sum a_n$ is divergent.