Review for Final

MATH 2423

Fall 2005

1. Find the area of the region bounded by the curves
a) $y=20-x^{2}, y=x^{2}-12$
b) $y=1-x^{2}, y=1-\sqrt{x}$
c) $x+y=0, x=y^{2}+3 y$
2. Find the volume obtained by rotating the region bounded by the given curves about the specified line.
a) $x=1+y^{2}, y=x-3$ about y-axis
b) $x=0, x=9-y^{2}$ about $x=-1$
3. Find the volume of a circular cone with height h and base radius r.
4. The base of a solid is a circular disk with radius 3 . Find the volume of the solid if parallel cross-sections perpendicular to the base are isosceles right triangles with hypotenuse lying along the base.
5. Find the length of the curve

$$
y=\frac{1}{6}\left(x^{2}+4\right)^{3 / 2}, 0 \leq x \leq 3
$$

6. Find the area of the surface obtained by rotating
a) $9 x=y^{2}+18,2 \leq x \leq 6$ about x-axis
b) $y=x^{2}, 0 \leq x \leq 1$ about x-axis
7. a) Find the approximations T_{4} and M_{4} for the integral $\int_{0}^{2} e^{-x^{2}} d x$.
b) Estimate errors in the approximations of part a).
c) How large do we have to choose n so that T_{n} and M_{n} are accurate to within $0.00001 ?$
8. Determine whether the improper integral is convergent or divergent. If convergent find its value.
a) $\int_{1}^{\infty} \frac{1}{(2 x+1)^{3}} d x$
b) $\int_{3}^{5} \frac{x}{\sqrt{x-3}} d x$
c) $\int_{0}^{3} \frac{d x}{x^{2}-x-2} d x$
d) $\int_{1}^{\infty} \frac{\arctan x}{x^{2}} d x$
9. Use the Comparison Theorem to determine whether the integral is convergent or divergent
a) $\int_{0}^{1} \frac{e^{-x}}{\sqrt{x}} d x$
b) $\int_{1}^{\infty} \frac{1+\cos ^{2} x}{x+2} d x$
