Review Problems for Test I

math 2423-001

1. Estimate the area under the graph $f(x)=x^{3}+2$ from $x=-1$ to $x=2$ using three rectangles and right endpoints.
2. Find the limit
a) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{10}{n} \sin \left(\frac{10 \pi i}{n}\right)$;
b) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{6}{n}\left(7+\frac{18 i}{n}\right)$.
3. Find the definite and indefinite integrals
a) $\int_{1}^{4} \sqrt{t}-\frac{2}{\sqrt{t}} d t$;
b) $\int_{0}^{2}\left(x^{2}-|x-1|\right) d x$;
c) $\int \frac{\cos (\pi / x)}{x^{2}} d x$;
d) $\int_{0}^{4} x \sqrt{16-3 x} d x$.
4. Find the area of the region bounded by the curves.
a) $y=\sin x, y=-\cos x, x=0, x=\pi$;
b) $x-2 y+7=0, y^{2}-6 y-x=0$.
5. Find the volume of a solid obtained by rotating the region bounded by the given curves about the specified axis.
a) $x=y^{2}, x=1$ about $x=2$;
b) $y=x^{2}, y^{2}=x$ about x-axis;
c) $y^{2}-6 y+x=0, x=0$ about x-axis.
6. (problem 29 a) p.402) A tank full of water has the shape of a paraboloid of revolution, that is its shape is obtained by rotating a parabola about a vertical axis. If its height is 4 ft and the radius at the top is 4 ft , find the work required to pump the water out of the tank.
