Review Problems for Test I

Honors Calculus I

1) Let $f(x)=1 / x, g(x)=x^{3}$ and $h(x)=x^{2}+2$. Find $f \circ g \circ h$.
2) Express $H(x)=\sin ^{4}(\sqrt{x})$ in the form $f \circ g \circ h$.
3) Determine whether the following limits exist. If yes, evaluate.
1. $\lim _{t \rightarrow 2} \frac{t^{2}+t-6}{t^{2}-4}$;
2. $\lim _{h \rightarrow 0} \frac{(1+h)^{4}-1}{h}$;
3. $\lim _{x \rightarrow 2} \frac{|x-2|}{x-2}$;
4. $\lim _{x \rightarrow 0} \sqrt{x^{2}+x^{3}} \sin \frac{2 \pi}{x^{3}}$.
4) Prove each of the following statements using the $\epsilon-\delta$ definition of a limit.
1. $\lim _{x \rightarrow 2}(4 x+11)=19$;
2. $\lim _{x \rightarrow 0} x^{3}=0$.
5) Find the points at which $f(x)$ is discontinuous

$$
f(x)= \begin{cases}2 x-2 & \text { if } x \leq-1 \\ 3 x & \text { if }-1<x<1 \\ 2 x+1 & \text { if } x \geq 1\end{cases}
$$

6) Find the constant c that makes $g(x)$ continuous on $(-\infty,+\infty)$

$$
g(x)= \begin{cases}x^{2}-c^{2} & \text { if } x<4 \\ c x+20 & \text { if } x \geq 4\end{cases}
$$

7) Prove that the equation

$$
x^{5}-x^{2}+2 x+3=0
$$

has at least one real root.
8)Find an equation of the tangent line to the curve at a given point.

1. $y=1 / \sqrt{x}$, at $P(4,1 / 2)$;
2. $y=x^{2}+1$, at $P(1,2)$.
