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1. Introduction

1.1. In 1961, Kostant proved a celebrated result which computes the ordinary Lie algebra
cohomology for the nilradical of the Borel subalgebra of a complex simple Lie algebra g
with coefficients in a finite-dimensional simple g-module. Over the last forty years other
proofs have been discovered. One such proof uses the properties of the Casimir operator
on cohomology described by the Casselman-Osborne theorem (cf. [GW, §7.3] for details).
Another proof uses the construction of BGG resolutions for simple finite-dimensional g-
modules [Ro]. Recently, Polo and Tilouine [PT] constructed BGG resolutions over Z(p)

for finite-dimensional irreducible G-modules where G is a semisimple algebraic group with
high weights in the bottom alcove as long as p ≥ h − 1 (h is the Coxeter number for the
underlying root system). One can then use a base change argument to show that Kostant’s
theorem holds for these modules over algebraically closed fields of characteristic p when
p ≥ h− 1. It should be noted that Friedlander and Parshall had earlier obtained a slightly
weaker formulation of this result (cf. [FP1, §2])

The aim of this paper is to investigate and compare the cohomology of the unipotent
radical of parabolic subalgebras over C and Fp. We present a new proof of Kostant’s
theorem and Polo-Tilouine’s extension in Sections 2–4. Our proof employs known linkage
results in Category OJ and the graded G1T category for the first Frobenius kernel G1.
There are several advantages to our approach. Our proofs of these cohomology formulas
are self-contained and our approach is presented in a conceptual manner. This enables us
to identify key issues in attempting to compute these cohomology groups for small primes.

In Section 5, we prove that when p < h − 1, there are always additional cohomology
classes in H•(u, Fp) beyond those given by Kostant’s formula. The proof of this result relies
heavily on the modular representation theory of reductive algebraic groups. Furthermore,
we exhibit natural classes that arise in H2p−1(u, Fp) when Φ = Ap+1 which do not arise over
fields of characteristic zero. In Section 6, we examine several low rank examples of H•(uJ , Fp)
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K. Nakano, Kenyon J. Platt, Emilie Wiesner, Caroline B. Wright and Benjamin Wyser.

cc〈a∇∞30000 (copyright holder)

1



2 UNIVERSITY OF GEORGIA VIGRE ALGEBRA GROUP

which were generated using MAGMA. These examples suggest interesting phenomena which
lead us to pose several open questions in Section 7.

1.2. Notation. The notation and conventions of this paper will follow those given in
[Jan]. Let k be an algebraically closed field, and G a simple algebraic group defined over
k with T a maximal torus of G. The root system associated to the pair (G, T ) is denoted
by Φ. Let Φ+ be a set of positive roots and Φ− be the corresponding set of negative roots.
The set of simple roots determined by Φ+ is ∆ = {α1, . . . , αl}. We will use throughout this
paper the ordering of simple roots given in [Hum1] following Bourbaki. Given a subalgebra
a ⊂ g which is a sum of root spaces, let Φ(a) denote the corresponding set of roots. Let B
be the Borel subgroup relative to (G, T ) given by the set of negative roots and let U be the
unipotent radical of B. More generally, if J ⊆ ∆, let PJ be the parabolic subgroup relative
to −J and let UJ be the unipotent radical and LJ the Levi factor of PJ . Let ΦJ be the root
subsystem in Φ generated by the simple roots in J , with positive subset Φ+

J = ΦJ ∩ Φ+.
Set g = Lie G, b = Lie B, u = Lie U , pJ = Lie PJ , lJ = Lie LJ , and uJ = Lie UJ .

Let E be the Euclidean space associated with Φ, and denote the inner product on E by
〈 , 〉. Let α̌ be the coroot corresponding to α ∈ Φ. Set α0 to be the highest short root. Let
ρ be the half sum of positive roots. The Coxeter number associated to Φ is h = 〈ρ, α̌0〉+ 1.

Let X := X(T ) be the integral weight lattice spanned by the fundamental weights
{ω1, . . . , ωl}. Let M be a finite-dimensional T -module and M = ⊕λ∈XMλ be its weight
space decomposition. The character of M , denoted by ch M =

∑
λ∈X(dim Mλ)eλ ∈

Z[X(T )]. If M and N are T -modules such that dim Mλ ≤ dim Nλ for all λ then we say that
ch M ≤ ch N . The set X has a partial ordering defined as follows: λ ≥ µ if and only if
λ−µ ∈

∑
α∈∆ Z≥0 α. The set of dominant integral weights is denoted by X+ = X(T )+ and

the set of pr-restricted weights is Xr = Xr(T ). For J ⊆ ∆, the set of J-dominant weights is

X+
J := {µ ∈ X | 〈µ, α̌〉 ∈ Z≥0 for all α ∈ Φ+

J }.

and denote the p-restricted J-weights by (XJ)1. The bottom alcove CZ is defined as

CZ := {λ ∈ X | 0 ≤ 〈λ + ρ, α̌0〉 ≤ p}.

Set H0(λ) = indG
Bλ where λ is the one-dimensional B-module obtained from the char-

acter λ ∈ X+ by letting U act trivially. The Weyl group corresponding to Φ is W and acts
on X via the dot action w · λ = w(λ + ρ)− ρ where w ∈ W , λ ∈ X.

2. Cohomology and Composition Factors

2.1. For this section, let R = Z, C or Fp, and let J ⊆ ∆. Then uJ has a basis consisting
of root vectors where the structure constants are in R. In order to construct such a basis
one can take an appropriate subset of the Chevalley basis for g. The standard complex on
Λ•(u∗J) has differentials which are R-linear maps and we will denote the cohomology of this
complex by H•(uJ , R). Moreover, the torus T acts on the standard complex Λ•(u∗J). The
differentials respect the T -action so it suffices to look at the smaller complexes (Λ•(u∗J))λ.
The cohomology of this complex will be denoted by H•(uJ , R)λ. For each n, (Λn(u∗J))λ is a
free R-module of finite rank, so the cohomology Hn(uJ , R)λ is a finitely generated R-module.
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One can use the arguments given in Knapp [Kna, Theorem 6.10] to show that the
cohomology groups when R = C or Fp satisfy Poincaré Duality:

(2.1.1) Hn(uJ , R) ∼= HN−n(uJ , R)∗ ⊗ ΛN (u∗J)

as T -modules where N = dim uJ . The Universal Coefficient Theorem (UCT) (cf. [R, Theo-
rem 8.26]) can be used to relate the cohomology over Z to the cohomology over C and Fp.
The Z-module C is divisible, so from the UCT (cf. [R, Corollary 8.28]) we have

(2.1.2) Hn(uJ , C)λ
∼= Hn(uJ , Z)λ ⊗Z C.

On the other hand, when k = Fp, the UCT shows that

(2.1.3) Hn(uJ , Fp)λ
∼= (Hn(uJ , Z)λ ⊗Z Fp)⊕ Ext1Z(Fp,Hn−1(uJ , Z)λ).

For every n, the formulas (2.1.2) and (2.1.3) demonstrate that

dim Hn(uJ , C)λ ≤ dim Hn(uJ , Fp)λ.

In particular, ch Hn(uJ , C) ≤ ch Hn(uJ , Fp). One should observe that additional coho-
mology classes in Hn(uJ , Fp)λ can arise from either the first or second summand in (2.1.3)
because of p-torsion in H•(uJ , Z)λ.

For a uJ -module, one can define Hn(uJ ,M) using a complex involving Λ•(u∗J) ⊗ M
[Jan, I 9.17]. If M is a pJ -module then Hn(uJ ,M) is a lJ -module. If M , N are arbitrary
uJ -modules then Extn

u (M,N) = Hn(uJ ,M∗ ⊗N) for n ≥ 0.

2.2. Category OJ . For this section, k = C. Fix J ⊆ ∆. Denote the Weyl group of ΦJ

by WJ , viewed as a subgroup of W . Let U(g) denote the universal enveloping algebra of g.

Definition 2.2.1. Let OJ be the full subcategory of the category of U(g)-modules
consisting of modules V which satisfy the following conditions:

(i) The module V is a finitely generated U(g)-module.
(ii) As a U(lJ)-module, V is the direct sum of finite-dimensional U(lJ)-modules.
(iii) If v ∈ V , then dimC U(uJ)v < ∞.

Let Z be the center of U(g) and denote the set of algebra homomorphisms Z → C by
Z]. We say that χ ∈ Z] is a central character of V ∈ OJ if zv = χ(z)v for all z ∈ Z and
all v ∈ V . For each χ ∈ Z], let Oχ

J be the full subcategory of OJ consisting of modules
V ∈ OJ such that for all z ∈ Z and v ∈ V , v is annihilated by some power of z − χ(z). We
have the decomposition

OJ =
⊕
χ∈Z]

Oχ
J .

We call Oχ
J an infinitesimal block of category OJ .

For the purpose of this paper we will only need to apply information about the integral
blocks so we can assume that the weights which arise are in X. The key objects in integral
blocks of OJ are the parabolic Verma modules, which are defined as follows. For a finite-
dimensional irreducible lJ -module LJ(µ) with highest weight µ ∈ X+

J extend LJ(µ) to a
pJ -module by letting u+

J act trivially. The induced module

ZJ(µ) = U(g)⊗U(pJ ) LJ(µ)

is a parabolic Verma module, which we will abbreviate as PVM.
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The module ZJ(µ) has a unique maximal submodule and hence a unique simple quotient
module, which we denote by L(µ); L(µ) is also the unique simple quotient of the ordinary
Verma module Z(µ) := U(g) ⊗U(b) µ. All simple modules in the integral blocks of OJ are
isomorphic to some L(µ). For each µ ∈ X, the ordinary Verma module Z(µ) (and any
quotient thereof, such as ZJ(µ) or L(µ) if µ ∈ X+

J ) has a central character which we will
denote by χµ ∈ Z]. If χ = χµ, write Oµ

J := Oχµ

J . The Harish-Chandra linkage principle
yields

χµ = χν ⇔ ν ∈ W · µ.

This implies that the simple modules (and hence the PVM’s and projective indecomposable
modules) in Oµ

J can be indexed by {w ∈ W | w · µ ∈ X+
J } (by identifying repetitions).

For µ ∈ X, let
Φµ = {α ∈ Φ | 〈µ + ρ, α̌〉 = 0}.

If Φµ = ∅, then we say that µ is a regular weight ; otherwise, it is a singular weight. If
µ and ν are both regular weights, then Oµ

J is equivalent to Oν
J by the Jantzen-Zuckerman

translation principle.
For each α ∈ Φ, let sα ∈ W denote the reflection in E about the hyperplane orthogonal

to α. If µ is a regular dominant weight, then {w ∈ W | w · µ ∈ X+
J } is the set

(2.2.1) JW = {w ∈ W | l(sαw) = l(w) + 1 for all α ∈ J} = {w ∈ W | w−1(Φ+
J ) ⊆ Φ+}

which is the set of minimal length right coset representatives of WJ in W . Let w0 (resp.
wJ , Jw) denote the longest element in W (resp. WJ , JW ). Then w0 = wJ

Jw.

2.3. The following theorem provides information about the LJ composition factors in
H•(uJ , L(µ)) when k = C. For V a finite dimensional semisimple LJ -module, write [V :
LJ(σ)]LJ

for the multiplicity of LJ(σ) as an LJ -composition factor of V .

Theorem 2.3.1. Let k = C, V ∈ OJ and λ ∈ X.
(a) Exti

OJ
(ZJ(λ), V ) ∼= HomlJ (LJ(λ),Hi(uJ , V ))

(b) If [Hi(uJ , L(µ)) : LJ(σ)]LJ
6= 0 where µ ∈ X+ then σ = w · µ where w ∈ JW .

Proof. (a) First observe that Exti
OJ

(ZJ(λ), V ) ∼= Exti
(g,lJ )(ZJ(λ), V ) (relative Lie al-

gebra cohomology) and by Frobenius reciprocity we have

Exti
(g,lJ )(ZJ(λ), V ) ∼= Exti

(pJ ,lJ )(LJ(λ), V ) ∼= Hi(pJ , lJ ;LJ(λ)∗ ⊗ V ).

Since uJ E pJ , one can use the Grothendieck spectral sequence construction given in
[Jan, I Proposition 4.1] to obtain a spectral sequence,

Ei,j
2 = Hi(pJ/uJ , lJ/(lJ ∩ uJ)); Hj(uJ , 0;LJ(λ)∗ ⊗ V ) ⇒ Hi+j(pJ , lJ ;LJ(λ)∗ ⊗ V ).

However, Ei,j
2
∼= Hi(lJ , lJ ; Hj(uJ , 0;LJ(λ)∗ ⊗ V )) = 0 for i > 0, so the spectral sequence

collapses and yields

HomlJ (LJ(λ),Hj(uJ , V )) ∼= H0(lJ , lJ ; Hj(uJ , LJ(λ)∗ ⊗ V )) ∼= Hj(pJ , lJ ;LJ(λ)∗ ⊗ V ).

(b) Suppose that [Hi(uJ , L(µ)) : LJ(σ)]LJ
6= 0. Then from part (a),

[Hi(uJ , L(µ)) : LJ(σ)]LJ
= dim HomlJ (LJ(σ),Hi(uJ , L(µ))) = dim Exti

OJ
(ZJ(σ), L(µ)).

But, Exti
OJ

(ZJ(σ), L(µ)) 6= 0 implies by linkage that σ = w · µ where w ∈ JW . �
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2.4. Now let us assume that k = Fp. Let Wp be the affine Weyl group and Ŵp be the
extended affine Weyl group. In this setting we regard G as an affine reductive group scheme
with F : G → G denoting the Frobenius morphism. Let F r be this morphism composed
with itself r times and set GrT = (Fr)−1(T ). The category of GrT -modules has a well
developed representation theory (cf. [Jan, II Chapter 9]). Group schemes analogous to GrT
can be defined similarly using the Frobenius morphism for LJ , PJ , B, U , etc.

The following theorem provides information about the composition factors in the uJ -
cohomology for p ≥ 3.

Theorem 2.4.1. Let k = Fp with p ≥ 3.

(a) If [Hi(uJ , L(µ)) : LJ(σ)]LJ
6= 0 where µ ∈ X+ then µ = w · σ where w ∈ Ŵp.

(b) If [Hi(uJ , L(µ)) : LJ(σ)]LJ
6= 0 where µ ∈ X1 and σ ∈ (XJ)1 then µ = w · σ where

w ∈ Wp.

Proof. (a) Suppose that [Hi(uJ , L(µ)) : LJ(σ)]LJ
6= 0. From the Steinberg tensor

product theorem, we can write LJ(σ) = LJ(σ0)⊗LJ(σ1)(1) where σ0 ∈ (XJ)1 and σ1 ∈ X+
J .

Therefore, [Hi(uJ , L(µ)) : LJ(σ0) ⊗ pγ1](LJ )1T 6= 0 for some γ1 ∈ X. One can also express
µ = µ0 + pµ1 where µ0 ∈ X1 and µ1 ∈ X+ so that

Hi(uJ , L(µ)) ∼= Hi(uJ , L(µ0))⊗ L(µ1)(1).

Therefore, [Hi(uJ , L(µ)) : LJ(σ0) ⊗ pγ1](LJ )1T 6= 0 implies that [Hi(uJ , L(µ0)) ⊗ pγ2 :
LJ(σ0) ⊗ pγ1](LJ )1T 6= 0 for some γ2 ∈ X, thus [Hi(uJ , L(µ0)) : LJ(σ0) ⊗ pγ](LJ )1T 6= 0
for some γ ∈ X (where γ = γ1 − γ2).

Observe that

(2.4.1) [Hi(uJ , L(µ0)) : LJ(σ0)⊗ pγ](LJ )1T = dim Hom(LJ )1T (PJ(σ0)⊗ pγ, Hi(uJ , L(µ0))).

where PJ(σ0)⊗ pγ is the (LJ)1T projective cover of LJ(σ0)⊗ pγ.
Next consider the composition factor multiplicities for the cohomology of L(µ0) over

the Frobenius kernel (UJ)1,

[Hi((UJ)1, L(µ0)) : LJ(σ0)⊗ pγ](LJ )1T = dim Hom(LJ )1T (PJ(σ0)⊗ pγ, Hi((UJ)1, L(µ0))).

We can also give another interpretation of this composition factor multiplicity. First, let us
apply the Lyndon-Hochschild-Serre spectral sequence for (UJ)1 E (PJ)1T , (PJ)1T/(UJ)1 ∼=
(LJ)1T :

(2.4.2) Ei,j
2 = Exti

(LJ )1T (PJ(σ0)⊗ pγ, Hj((UJ)1, L(µ0))) ⇒ Exti+j
(PJ )1T (PJ(σ0)⊗ pγ, L(µ0)).

Since P := PJ(σ0)⊗ pγ is projective as an (LJ)1T -module, the spectral sequence collapses
and we have

Hom(LJ )1T (P,Hi((UJ)1, L(µ0)) ∼= Exti
(PJ )1T (P,L(µ0))

∼= Exti
G1T (coindG1T

(PJ )1T P,L(µ0)).

For p ≥ 3, there exists another first quadrant spectral sequence which can be used to
relate these two different composition factor multiplicities [FP2, (1.3) Proposition]:

E2i,j
2 = Si(u∗J)(1) ⊗Hj(uJ , L(µ0)) ⇒ H2i+j((UJ)1, L(µ0)).
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Since the functor Hom(LJ )1T (P,−) is exact, we can compose it with the spectral sequence
above to get another spectral sequence:
(2.4.3)

E2i,j
2 = Si(u∗J)(1) ⊗Hom(LJ )1T (P,Hj(uJ , L(µ0))) ⇒ Hom(LJ )1T (P,H2i+j((UJ)1, L(µ0))).

Suppose that σ0 + pγ /∈ Wp · µ0. Then by the linkage principle for G1T :

Hom(LJ )1T (PJ(σ0)⊗ pγ, Hi((UJ)1, L(µ0))) ∼= Exti
G1T (coindG1T

(PJ )1T PJ(σ0)⊗ pγ, L(µ0)) = 0

for all i ≥ 0. Therefore, the spectral sequence (2.4.3) abuts to zero. The differential
d2 in the spectral sequence maps E0,j

2 to E2,j−1
2 . Note that E2i,j

2 = Si(u∗J)(1) ⊗ E0,j
2 for

all i, j ≥ 0. Since 0 = E0 = E0,0
2 , it follows that E2i,0

2 = 0 for i ≥ 0. Therefore,
E0,1

2 = 0, thus E2i,1
2 = 0 for i ≥ 0. Continuing in this fashion, we have E2i,j

2 = 0 for
all i, j. In particular, using (2.4.1) and (2.4.3), [Hj(uJ , L(µ0)) : LJ(σ0) ⊗ pγ](LJ )1T =
dim Hom(LJ )1T (P,Hj(uJ , L(µ0))) = dim E0,j

2 = 0 for all j which is a contradiction. This
implies that µ0 and σ0 are in the same orbit under Ŵp, thus µ = w · σ where w ∈ Ŵp.

(b) Under the hypotheses, we can apply the above argument with 0 = γ1 = γ2 = γ.
Therefore, µ = w · σ where w ∈ Wp. �

2.5. We present the following proposition which allows one to compare composition
factors of the cohomology with coefficients in a module to the cohomology with trivial
coefficients. Note that this proposition is independent of the characteristic of the field k.

Proposition 2.5.1. Let J ⊆ ∆ and V be a finite-dimensional PJ -module. If [Hi(uJ , V ) :
LJ(σ)]LJ

6= 0 for σ ∈ X+
J then [Hi(uJ , k)⊗ V : LJ(σ)]LJ

6= 0.

Proof. The simple finite-dimensional PJ -modules are the simple finite-dimensional
LJ -modules inflated to PJ by making UJ act trivially. We will prove the proposition by
induction on the composition length n of V . For n = 1, this is clear because V is simple
and UJ acts trivially so

Hi(uJ , V ) ∼= Hi(uJ , k)⊗ V.

Now assume that the proposition holds for modules of composition length n, and let V
have composition length n + 1. There exists a short exact sequence

0 → V ′ → V → L → 0

where V ′ has composition length n and L is a simple PJ -module. We have a long ex-
act sequence in cohomology which shows that if [Hi(uJ , V ) : LJ(σ)]LJ

6= 0 then either
[Hi(uJ , V ′) : LJ(σ)]LJ

6= 0 or [Hi(uJ , L) : LJ(σ)]LJ
6= 0. By the induction hypothesis, this

implies [Hi(uJ , k)⊗ V ′ : LJ(σ)]LJ
6= 0 or [Hi(uJ , k)⊗ L : LJ(σ)]LJ

6= 0.
The short exact sequence above can be tensored by Hi(uJ , k) to obtain a short exact

sequence:
0 → Hi(uJ , k)⊗ V ′ → Hi(uJ , k)⊗ V → Hi(uJ , k)⊗ L → 0.

The result now follows because one of the terms on the end has an LJ composition factor of
the form LJ(σ) by the induction hypothesis, so the middle term has to have a composition
factor of this form. �
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3. Parabolic Computations

In this section we prove several elementary results which will be ingredients in our proof
of Kostant’s Theorem and its generalization to prime characteristic in Section 4.

3.1. Given Ψ ⊂ Φ+, write

〈Ψ〉 =
∑
β∈Ψ

β.

For w ∈ W put

(3.1.1) Φ(w) = −(wΦ+ ∩ Φ−) = wΦ− ∩ Φ+ ⊂ Φ+.

We recall some basic facts about Φ(w).

Lemma 3.1.1. Let w ∈ W .
(a) |Φ(w)| = l(w).
(b) w · 0 = −〈Φ(w)〉.
(c) If w = sj1 . . . sjt is a reduced expression, then

Φ(w−1) = {αjt , sjtαjt−1 , sjtsjt−1αjt−2 , . . . , sjt . . . sj2αj1}.

Proof. (a) [Hum1, Lemma 10.3A], (b) [Kna, Proposition 3.19], (c) [Hum2, Exercise
5.6.1] �

Lemma 3.1.2. Let J ⊆ ∆ and w ∈ W .
(a) Φ(w) ⊂ Φ+ r Φ+

J = Φ(uJ) if and only if w ∈ JW .
(b) If w · 0 = −〈Ψ〉 for some Ψ ⊂ Φ+ then Ψ = Φ(w).

Proof. (a) Assume w ∈ JW . Let β ∈ Φ(w). Then β ∈ Φ+, and β ∈ wΦ− whence
w−1β ∈ Φ−. Thus β /∈ Φ+

J by the second characterization of JW in (2.2.1).
Conversely, assume w /∈ JW . Then by the first characterization of JW in (2.2.1), w has

a reduced expression beginning with sα for some α ∈ J (by the Exchange Condition, for
instance). Then by Lemma 3.1.1(c), α ∈ Φ(w); but α ∈ Φ+

J so Φ(w) 6⊂ Φ+ r Φ+
J .

(b) We prove this by induction on l(w). If l(w) = 0 then w = 1 and w · 0 = 0, so clearly
the only possible Ψ is Ψ = ∅ = Φ(1).

Given w with l(w) > 0, write w = sαw′ with α ∈ ∆ and l(w′) = l(w) − 1. Then
α ∈ Φ(w) and α /∈ Φ(w′) = sα(Φ(w) r {α}); cf. the proof of [Hum2, Lemma 1.6]. Suppose
w · 0 = −(γ1 + · · ·+ γm) for distinct γ1, . . . , γm ∈ Φ+. Then

w′ · 0 = sα · (w · 0) = sα(w · 0) + sαρ− ρ = −(sαγ1 + · · ·+ sαγm + α).

There are two cases.
Case 1: No γi = α. Then sαγ1, . . . , sαγm, α are distinct positive roots: sα permutes the
positive roots other than α, and no sαγi = α because sα(−α) = α. But then by induction,
{sαγ1, . . . , sαγm, α} = Φ(w′), and this contradicts α /∈ Φ(w′).
Case 2: Some γi = α. Say γm = α. Then sα(γm) = −α, so w′ · 0 = −(sαγ1 + · · ·+ sαγm−1).
By induction, Φ(w′) = {sαγ1, . . . , sαγm−1}. Hence Φ(w) = sαΦ(w′) ∪ {α} = {γ1, . . . , γm}
as required. �
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3.2. Saturation. Lemma 3.1.2 guarantees that, for w ∈ JW , w · 0 = −〈Φ(w)〉 is a
weight in Λn(u∗J), where n = l(w). Specifically, if Φ(w) = {β1, . . . , βn} then the vector
fΦ(w) := fβ1 ∧ · · · ∧ fβn has the desired weight, where {fβ | β ∈ Φ(uJ)} is the basis for u∗J
dual to a fixed basis of weight vectors {xβ | β ∈ Φ(uJ)} for uJ . Lemmas 3.1.1 and 3.1.2
guarantee that the weight w · 0 occurs with multiplicity one in Λ•(u∗J). In particular, since
the differentials in the complex 0 → Λ•(u∗J) preserve weights, we see that fΦ(w) descends to
an element of Hn(uJ , k) of weight w ·0, and n is the only degree in which this weight occurs
in H•(uJ , k) (where k = C or Fp).

In order to prove that fΦ(w) generates an LJ -submodule of H•(uJ , k) of highest weight
w · 0, we need the following condition, which could be described by saying that Φ(w) is
“saturated” with respect to Φ+

J .

Proposition 3.2.1. Let w ∈ JW . If β ∈ Φ(w), γ ∈ Φ+
J , and δ = β − γ ∈ Φ, then

δ ∈ Φ(w).

Proof. We prove this by induction on l(w). If w = 1 then Φ(w) = ∅ and the statement
is vacuously true. So assume l(w) > 0. Write w = w′sα with α ∈ ∆ and l(w′) = l(w) − 1;
then necessarily w′ ∈ JW . To see this, note that wα < 0, so (w′)−1(Φ+

J ) = sαw−1(Φ+
J ) ⊂

sα(Φ+ r {α}) ⊂ Φ+. Now

Φ(w) = Φ+ ∩ w′sαΦ−

= Φ+ ∩ w′(Φ− r {−α} ∪ {α})
= (Φ+ ∩ w′Φ−) ∪ {w′α}
= Φ(w′) ∪ {w′α},

where in the third equality we have used the fact that w′α > 0. By induction, Φ(w′) is
saturated with respect to Φ+

J . So it remains to check the condition of the lemma when
β = w′α.

Let β = w′α and suppose δ = β−γ ∈ Φ for some γ ∈ Φ+
J . Since β ∈ Φ+rΦ+

J by Lemma
3.1.2, and γ ∈ Φ+

J , necessarily δ ∈ Φ+ rΦ+
J . Consider the root (w′)−1δ = (w′)−1(w′α−γ) =

α − (w′)−1(γ). Since w′ ∈ JW and γ ∈ Φ+
J , we know (w′)−1(γ) > 0. Since α is simple,

(w′)−1δ < 0. That is, δ ∈ w′(Φ−). Thus, δ ∈ Φ(w′) ⊂ Φ(w), as required. �

3.3. Prime characteristic. In the prime characteristic setting we will need to work
harder than in characteristic zero, because our control over the composition factors in
cohomology in Theorem 2.4.1 is much weaker than in Theorem 2.3.1. We begin by recording
two simple technical facts which will be needed later.

Proposition 3.3.1. (a) Let λ, µ ∈ X and suppose λ = wµ where w = sj1 . . . sjt

with t minimal. Then 〈αjr , sjr+1 . . . sjtµ〉 6= 0 for 1 ≤ r ≤ t− 1.
(b) Suppose α̃ ∈ Φ+ has maximal height in its W -orbit. Then 〈β, α̃〉 ≥ 0 for all

β ∈ Φ+.

Proof. (a) Since t is minimal,

sjr+1 . . . sjtµ 6= sjr . . . sjtµ = sjr+1 . . . sjtµ− 〈sjr+1 . . . sjtµ, α̌jr〉αjr .

This implies the desired inequality.
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(b) Otherwise, sβ(α̃) = α̃−〈α̃, β̌〉β would be a root of the same length as α̃, but higher,
contradicting the hypothesis. �

We will be able to cut down the possible weights in cohomology when p ≥ h − 1. The
proof will make use of certain special sums of positive roots. For 1 ≤ i ≤ l set

(3.3.1)

Φi = {α ∈ Φ+ | 〈ωi, α〉 > 0 }

= {α ∈ Φ+ | α =
∑

rjαj with ri > 0 }

= Φ+ r Φ+
J , where

J = Ji = ∆ r {αi},
Φ′

i = {α ∈ Φi | 〈α, αi〉 ≥ 0 },
and define

(3.3.2) δi = 〈Φi〉, δ′i = 〈Φ′
i〉.

We begin by collecting some elementary properties of δi.

Proposition 3.3.2. (a) w(Φi) = Φi for all w ∈ WJ .
(b) δi = cωi for some c ∈ Z.
(c) −δi = Jw · 0 where J = ∆ r {αi} (recall Jw is the longest element of JW ).

Proof. (a) For j 6= i and α a positive root involving αi, sj(α) is again a positive root
involving αi. Thus sj permutes Φi. Since the sj with j 6= i generate WJ , the result follows.

(b) From (a), for j 6= i, sj(δi) = δi. Thus when δi is written as a linear combination of
fundamental dominant weights, the coefficient of ωj is 0. That is, δi = cωi for some scalar
c. Since δi ∈ ZΦ, c ∈ Z.

(c) Write
2ρ =

∑
α∈Φ+

〈ωi,α〉>0

α +
∑

α∈Φ+

〈ωi,α〉=0

α = δi + 2ρJ .

Apply the longest element wJ of WJ , and use the first computation in (a):

2wJρ = wJδi − 2ρJ = δi − 2ρJ .

Thus
wJρ = 1

2δi − ρJ = 1
2δi − (ρ− 1

2δi) = δi − ρ,

and so
−δi = −wJρ− ρ = wJw0ρ− ρ = Jw · ρ.

�

3.4. The crucial property of δ′i is that 〈δ′i, α̌i〉 ≤ h. The proof will require a few steps.
First, put J = ∆ r {αi} as before, and recall that wJ denotes the longest element of the
parabolic subgroup WJ . Let wi ∈ W be an element of shortest possible length such that

(3.4.1) wiwJαi = α̃, the highest root in Wαi.

Proposition 3.4.1. Let i, J, wi and α̃ be as above.
(a) wJ(Φi r Φ′

i) = Φ(w−1
i ).

(b) wJ(δi − δ′i) = ρ− w−1
i ρ.
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(c) 〈δ′i, α̌i〉 = 1 + 〈ρ, α̃∨〉.
(d) 〈δ′i, α̌i〉 ≤ h.

Proof. (a) Observe that β ∈ wJ(Φi r Φ′
i) if and only if β = wJα with α ∈ Φi and

〈α, αi〉 < 0; equivalently (using Proposition 3.3.2(a)), 〈β, wJαi〉 < 0 and β ∈ Φi. Thus

(3.4.2) β ∈ wJ(Φi r Φ′
i) ⇐⇒ β ∈ Φi and 〈wiβ, α̃〉 < 0.

Assuming β ∈ wJ(Φi r Φ′
i), then β ∈ Φ+ and wiβ ∈ Φ− (by Proposition 3.3.1(b));

equivalently β ∈ Φ(w−1
i ) (by (3.1.1)).

To prove the reverse inclusion, assume that β ∈ Φ(w−1
i ); i.e., β ∈ Φ+ and wiβ ∈ Φ−.

We claim it is enough to show that 〈wiβ, α̃〉 < 0 (the second condition of (3.4.2)). For if
β /∈ Φi then β ∈ Φ+

J , hence wJβ ∈ Φ−
J , and thus 〈wiβ, α̃〉 = 〈β, wJαi〉 = 〈wJβ, αi〉 ≥ 0,

since 〈αj , αi〉 ≤ 0 for j 6= i.
It remains to show 〈wiβ, α̃〉 < 0, or, equivalently, 〈wiβ, α̃〉 6= 0, since wiβ ∈ Φ− (recall

Proposition 3.3.1(b)). Write wi = sj1 . . . sjt with t minimal. By Lemma 3.1.1(c) we have
β = sjt . . . sjr+1αjr for some 1 ≤ r ≤ t. Put µ = wJαi and λ = α̃ in Proposition 3.3.1(a) to
obtain

〈wiβ, α̃〉 = 〈sj1 . . . sjrαjr , sj1 . . . sjtwJαi〉 = 〈αjr , sjr+1 . . . sjtwJαi〉 6= 0.

(b) Using (a) and Lemma 3.1.1(b),

wJ(δi − δ′i) = 〈wJ(Φi r Φ′
i)〉 = 〈Φ(w−1

i )〉 = −w−1
i · 0 = ρ− w−1

i ρ.

(c) Using (b) and the idea of the proof of Proposition 3.3.2(c),

δi − δ′i = wJ(ρ− w−1
i ρ) = wJ [(ρ− 1

2δi) + 1
2δi]− wJw−1

i ρ

= −(ρ− 1
2δi) + 1

2δi − wJw−1
i ρ = δi − ρ− wJw−1

i ρ.

Thus δ′i = ρ + wJw−1
i ρ and so

〈δ′i, α̌i〉 = 〈ρ + wJw−1
i ρ, α̌i〉 = 1 + 〈ρ,wiwJ α̌i〉 = 1 + 〈ρ, α̃∨〉.

(d) Combine (c) with the inequality 〈ρ, α̃∨〉 ≤ 〈ρ, α̌0〉 = h− 1. �

3.5. The next proposition is the key to our proof of Kostant’s Theorem in characteristic
p ≥ h− 1.

Proposition 3.5.1. Assume p ≥ h − 1. Suppose σ = w · 0 + pµ is a weight of Λ•(u∗)
where w ∈ W and µ ∈ X. Then σ = x · 0 for some x ∈ W .

Proof. The proof is again by induction on l(w). Assume w = 1 so that pµ is a sum of
distinct negative roots. Set ν = −µ so that pν = 〈Ψ〉 for some Ψ ⊂ Φ+. For any 1 ≤ i ≤ l,

〈〈Ψ〉, α̌i〉 ≤ 〈δi, α̌i〉 ≤ 〈δ′i, α̌i〉.

The first inequality follows because 〈αj , α̌i〉 ≤ 0 if j 6= i whereas 〈αi, α̌i〉 = 2, so including
only positive roots that involve αi can only make the inner product bigger. The second
inequality follows similarly: including only those positive roots α with 〈α, α̌i〉 ≥ 0 obviously
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can only increase the inner product. Writing 〈Ψ〉 = 2ρ−〈Ψc〉, where Ψc = Φ+rΨ, applying
the same inequality for Ψc, and using the fact that 〈ρ, α̌i〉 = 1, we obtain

2− 〈δ′i, α̌i〉 ≤ 〈〈Ψ〉, α̌i〉 ≤ 〈δ′i, α̌i〉.

But we also have 〈δ′i, α̌i〉 ≤ h by Proposition 3.4.1(d). Thus

(3.5.1) 2− h ≤ p〈ν, α̌i〉 ≤ h.

Since p ≥ h− 1 and 〈ν, α̌i〉 ∈ Z, the first inequality implies 〈ν, α̌i〉 ≥ 0 for all i. That is, ν is
dominant. If p > h, the second inequality implies that 〈ν, α̌i〉 = 0 for all i, and thus ν = 0.
This completes the proof in the case w = 1 when p > h.

From Proposition 3.3.1(b), it follows that

p〈ν, α̌0〉 = 〈〈Ψ〉, α̌0〉 ≤ 〈2ρ, α̌0〉 = 2(h− 1).

Since p ≥ h − 1, we deduce that 〈ν, α̌0〉 = 0, 1 or 2. Suppose for the moment that we
handle the case 〈ν, α̌0〉 = 2; this case does not arise if p = h. Recall also that we know ν is
dominant. If 〈ν, α̌0〉 = 0 then ν = 0; this can be seen since α̌0 is the highest root of the dual
root system, and thus involves every dual simple root α̌i with positive coefficient [Hum1,
Lemma 10.4A]. So the coefficient of ωi in ν must be 0 for every i. Suppose 〈ν, α̌0〉 = 1.
Then ν is a minuscule dominant weight. Also pν = 〈Ψ〉 must belong to the root lattice.

When p = h− 1, one can check for each irreducible root system that p does not divide
the index of connection f (the index of the weight lattice in the root lattice); cf. [Hum1,
p. 68]. Thus ν itself must lie in the root lattice. However, a case-by-case check using the
list of minuscule weights (e.g., [Hum1, Exercise 13.13 and Table 13.1]) shows that this never
happens.

Assume p = h. The Coxeter number is prime only in type Al. In this case every
fundamental dominant weight ωi is minuscule, and h = f = l + 1 so pωi is in the root
lattice. Suppose ν = ωi. Recall from Proposition 3.3.2(b) that δi = cωi; we compute

c = 〈cωi, α̌i〉 =

〈 ∑
α∈Φ+

〈ωi,α〉>0

α, α̌i

〉
= 2 + (l − 1) = l + 1 = h,

where we have used the fact that 〈αi, α̌i〉 = 2, 〈αj + · · ·+αi, α̌i〉 = 〈αi + · · ·+αk, α̌i〉 = 1 for
1 ≤ j < i and i < k ≤ l, and 〈α, α̌i〉 = 0 for all other positive roots in type Al which involve
αi. Thus pµ = −hωi = −δi = x · 0 for some x ∈ W by Proposition 3.3.2(c), as required.

To complete the proof for w = 1, there remains to handle the case 〈ν, α̌0〉 = 2 when
p = h− 1. Set Ψ0 = {α ∈ Φ+ | 〈α, α̌0〉 > 0 } and γ = 〈Ψ0〉. We claim that γ = (h− 1)α0.
To see this, note that sα0Ψ0 = −Ψ0 (recall that 〈α, α̌0〉 ≥ 0 for α ∈ Φ+). So sα0γ = −γ.
Substituting this into the formula for sα0γ gives γ = 1

2〈γ, α̌0〉α0. But 〈γ, α̌0〉 = 〈2ρ, α̌0〉 =
2(h− 1), and this proves the claim.

Now assume p = h− 1, 〈ν, α̌0〉 = 2, and (h− 1)ν = 〈Ψ〉 for some Ψ ⊂ Φ+. Then

2(h− 1) = (h− 1)〈ν, α̌0〉 = 〈〈Ψ〉, α̌0〉 ≤ 〈2ρ, α̌0〉 = 2(h− 1),

so we must have equality at the third step. It follows from the definition of Ψ0 above, and
the fact that 〈γ, α̌0〉 = 2(h − 1), that Ψ0 ⊂ Ψ. But then 〈Ψ0 r Ψ〉 = (h − 1)(α0 − ν), so
α0− ν is a dominant weight (by the argument given for 〈Ψ〉 at the beginning of this proof),
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and 〈α0 − ν, α̌0〉 = 0 by the definition of Ψ0. As mentioned earlier, this implies α0 − ν = 0.
Thus σ = pµ = −pν = −(h− 1)α0 = −〈ρ, α̌0〉α0 = sα0 · 0. This completes the case w = 1.

The induction step is almost identical to that in Lemma 3.1.2(b). Write w = sαw′

as in that proof, and suppose as before that w · 0 + pµ = −(γ1 + · · · + γm) for distinct
γ1, . . . , γm ∈ Φ+. Then

w′ · 0 + psαµ = −(sαγ1 + · · ·+ sαγm + α).

This is a sum of m± 1 distinct negative roots (according to whether or not some γi = α).
By induction, w′ · 0 + psαµ = x′ · 0 for some x′ ∈ W . Apply sα· to get the result. �

3.6. In this section we prove results about complete reducibility of modules that will be
later used in our cohomology calculations.

Proposition 3.6.1. Let p ≥ h− 1, w ∈ JW , and λ ∈ CZ ∩X+. Then

(a) LJ(w · 0) is in the bottom alcove for LJ ;
(b) LJ(w · 0)⊗ L(λ) is completely reducible as an LJ -module.

Proof. (a) First decompose J := J1 ∪ J2 ∪ · · · ∪ Jt into indecomposable components,
and let β0 be the highest short root of one of the components Ji =: K. Observe that for
w ∈ JW ,

〈w · 0 + ρK , β̌0〉 = 〈wρ− ρ + ρK , β̌0〉 = 〈wρ, β̌0〉 = 〈ρ,w−1β̌0〉
where in the second equality we have used that both ρ and ρK have inner product 1 with
each simple coroot appearing in the decomposition of β̌0. Now since w ∈ JW and β0 ∈ Φ+

J ,
w−1β0 ∈ Φ+, and thus 0 ≤ 〈ρ,w−1β̌0〉 ≤ h − 1 ≤ p. Hence, w · 0 belongs to the closure of
the bottom LJ alcove.

(b) Suppose that LJ(ν +µ) is an LJ composition factor of LJ(w · 0)⊗L(λ) where ν +µ
is J-dominant and ν is a weight of LJ(w · 0) and µ is a weight of L(λ). We will show that
ν +µ belongs to the closure of the bottom LJ alcove. First observe that 〈µ, α̌〉 ≤ 〈λ, α̌0〉 for
all α ∈ Φ. Indeed, we can choose w ∈ W such that wµ is dominant and since µ is a weight
of L(λ), wµ ≤ λ. Therefore,

〈µ,w−1β̌〉 = 〈wµ, β̌〉 ≤ 〈wµ, α̌0〉 ≤ 〈λ, α̌0〉

for all β ∈ Φ.
Using the notation and results in (a), in addition to the fact that λ ∈ CZ, we have

〈ν + µ + ρK , β̌0〉 = 〈ν + ρK , β̌0〉+ 〈µ, β̌0〉
≤ 〈w · 0 + ρK , β̌0〉+ 〈µ, β̌0〉
≤ (h− 1) + 〈λ, α̌0〉
= 〈ρ, α̌0〉+ 〈λ, α̌0〉
= 〈λ + ρ, α̌0〉
≤ p.

The complete reducibility assertion follows by the Strong Linkage Principle [Jan, Proposition
6.13] because all the composition factors of LJ(w ·0)⊗L(λ) are in the bottom LJ alcove. �
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4. Kostant’s Theorem and Generalizations

4.1. In this section we will prove Kostant’s theorem, and its extension to characteristic p
by Friedlander-Parshall (p ≥ h) [FP1] and by Polo-Tilouine (p ≥ h− 1) [PT], for dominant
highest weights in the closure of the bottom alcove. We begin by proving the result for
trivial coefficients, and then use our tensor product results to prove it in the more general
setting.

Theorem 4.1.1. Let J ⊆ ∆. Assume k = C or k = Fp with p ≥ h − 1. Then as an
LJ -module

Hn(uJ , k) ∼=
⊕

w∈JW
l(w)=n

LJ(w · 0).

Proof. First observe that when p = 2 the condition that p ≥ h−1 implies that Φ = A1

or A2. For these cases the theorem can easily be verified directly. So assume that p ≥ 3.
We first prove that every irreducible LJ -module in the sum on the right side is a com-

position factor of the left side. By the remarks at the beginning of Section 3.2, we have for
each w ∈ JW with l(w) = n the vector fΦ(w) ∈ Hn(uJ , k), where Φ(w) = {β1, . . . , βn}. To
show that fΦ(w) is a maximal vector for the Levi subalgebra lJ , fix γ ∈ Φ+

J . Then

(4.1.1) xγfΦ(w) =
m∑

i=1

fβ1 ∧ · · · ∧ xγfβi
∧ · · · ∧ fβm .

Fix β = βi for some 1 ≤ i ≤ m. For any root vector xδ,

(xγfβ)(xδ) = −fβ([xγ , xδ])

is nonzero if and only if 0 6= [xγ , xδ] ∈ gβ, if and only if β = γ + δ (since root spaces are
one-dimensional). Assume xγfβ is nonzero; then it is a scalar multiple of fδ where δ = β−γ
is a root. Since β ∈ Φ(w), Proposition 3.2.1 implies that δ ∈ Φ(w); that is, δ = βj for some
j 6= i. Thus xγfβ = fβj

already occurs in the wedge product in (4.1.1). So every term
on the right hand side of (4.1.1) is 0, proving that fΦ(w) is the highest weight vector of a
LJ (resp. (LJ)1) composition factor of Hn(uJ , k) when k = C (resp. k = Fp). But, the
high weight is in the bottom LJ -alcove so we can conclude in general that this high weight
corresponds to a LJ composition factor isomorphic to LJ(w · 0).

We now prove that all composition factors in cohomology appear in Kostant’s formula.
By Theorem 2.3.1 when k = C, and by Theorem 2.4.1, Proposition 3.5.1, and Lemma
3.1.2 when k = Fp, any LJ composition factor of Hn(uJ , k) is an LJ(w · 0) for w ∈ JW .
By Lemmas 3.1.1(a) and 3.1.2(b), l(w) = n and LJ(w · 0) occurs with multiplicity one in
cohomology.

Moreover, when k = Fp, by Proposition 3.6.1 all the composition factors LJ(w · 0) lie in
the bottom LJ alcove. By the Strong Linkage Principle, there are no nontrivial extensions
between these irreducible LJ modules. So in either case, Hn(uJ , k) is completely reducible
and given by Kostant’s formula. �

We remark that the largest weight in Λ•(u∗) is 2ρ. Moreover, 〈2ρ + ρ, α̌0〉 = 3〈ρ, α̌0〉 =
3(h − 1). This weight is not in the bottom alcove unless p ≥ 3(h − 1). This necessitates a
more delicate argument for the complete reducibility of the cohomology when p ≥ h− 1.
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4.2. We can now use the previous theorem to compute the cohomology of uJ with coef-
ficients in a finite-dimensional simple g-module.

Theorem 4.2.1. Let J ⊆ ∆ and µ ∈ X+. Assume that either k = C, or k = Fp with
〈µ + ρ, β̌〉 ≤ p for all β ∈ Φ+. Then as an LJ -module,

Hn(uJ , L(µ)) ∼=
⊕

w∈JW
l(w)=n

LJ(w · µ).

Proof. Observe that the conditions on µ imply p ≥ h− 1. Namely, we have

(4.2.1) p ≥ 〈µ + ρ, α̌0〉 = h− 1 + 〈µ, α̌0〉 ≥ h− 1.

For p = 2, the only case that remains to be checked is the case when Φ = A1 and
L(µ) = L(1) is the two dimensional natural representation. This can be easily verified
using the definition of cocycles and differentials in Lie algebra cohomology. So assume that
p ≥ 3.

First consider the case k = Fp with p = h− 1. Then the inequalities in (4.2.1) must all
be equalities, whence 〈µ, α̌0〉 = 0. Since µ ∈ X+, it follows that µ = 0. But now we are
back to the setting of Theorem 4.1.1, where the result is proved. Thus for the rest of this
proof we may assume k = C or k = Fp with p ≥ h.

We first prove that every LJ composition factor of the cohomology occurs in the di-
rect sum on the right side. Let LJ(σ) be an LJ composition factor of Hn(uJ , L(µ)). By
Proposition 2.5.1 and Theorem 4.1.1, we have that LJ(σ) is an LJ composition factor of
LJ(w · 0)⊗ L(µ) for some w ∈ JW with l(w) = n. Moreover, by definition µ ∈ X1(T ) and
by the proof of Proposition 3.6.1(b), σ ∈ (XJ)1. Hence, by Theorem 2.3.1 or 2.4.1, σ = y ·µ
for some y ∈ Wp (when k = C we set Wp = W ).

According to Proposition 3.6.1, LJ(w ·0) = H0
J(w ·0), and LJ(w ·0)⊗L(µ) is completely

reducible. Therefore, by using Frobenius reciprocity

0 6= HomLJ
(LJ(σ), LJ(w · 0)⊗ L(µ)) ∼= HomBLJ

(LJ(σ), w · 0⊗ L(µ)).

From this statement, one can see that

σ = y · µ = w · 0 + ν̃

for some weight ν̃ of L(µ).
Choose x ∈ W such that ν̃ = xν with ν dominant. Note that ν is still a weight of L(µ),

so in particular ν ≤ µ. Rewriting the previous equation gives

(w−1y) · µ = w−1xν.

Applying [Jan, Lemma II.7.7(a)] with λ = 0, ν1 = µ ∈ X(T )+ ∩ W (µ − λ), we conclude
that ν = µ. Now apply [Jan, Lemma II.7.7(b)] to conclude that there exists w1 ∈ Wp such
that

w1 · 0 = 0 and w1 · µ = w−1xµ.

But since p ≥ h, ρ lies in the interior of the bottom alcove, so the stabilizer of 0 under
the dot action of Wp is trivial; i.e., w1 = 1. Thus µ = w−1xµ, or equivalently, w · µ =
w · 0 + xµ = w · 0 + ν̃ = y · µ = σ. Since w ∈ JW and l(w) = n, this proves that every
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composition factor in cohomology occurs in Kostant’s formula (possibly with multiplicity
greater than one).

We now prove that every LJ irreducible on the right side occurs as a composition factor
in cohomology, with multiplicity one. Let σ = w · µ for w ∈ JW with l(w) = n. The σ
weight space of C• = Λ•(u∗J)⊗ L(µ) contains at least the one dimensional space

Λn(u∗J)w·0 ⊗ L(µ)wµ

since w · µ = w · 0 + wµ = −〈Φ(w)〉 + wµ. To see that this is the entire σ weight space
of C• we use a simple argument of Cartier [Cart], which we reproduce here for the reader’s
convenience.

Note first that there is a bijection between subsets Ψ ⊂ Φ+ and subsets Ψ̃ ⊂ Φ satisfying

Φ = Ψ̃q−Ψ̃,

namely
Ψ = Ψ̃ ∩ Φ+ and Ψ̃ = Ψ ∪ −(Φ+ r Ψ).

Note that the collection of sets of the form Ψ̃ is invariant under the ordinary action of W .
It is easy to check that for such pairs,

(4.2.2) ρ− 〈Ψ〉 = −1
2〈Ψ̃〉.

Suppose σ = −〈Ψ〉+ ν for some Ψ ⊂ Φ+ and some weight ν of L(µ). It suffices to show
Ψ = Φ(w) and ν = wµ. We have σ + ρ = ρ− 〈Ψ〉+ ν = −1

2〈Ψ̃〉+ ν.
Thus

µ + ρ = w−1(σ + ρ) = w−1ν − 1
2〈w

−1Ψ̃〉 = w−1ν − 〈Γ〉+ ρ,

where we have applied (4.2.2) to w−1Ψ̃ and set Γ = w−1Ψ̃ ∩ Φ+.
But since w−1ν is a weight of L(µ) we can write w−1ν = µ−

∑
i miαi with mi ∈ Z≥0.

So
µ = µ−

∑
i

miαi − 〈Γ〉.

We conclude that all mi = 0, so w−1ν = µ and ν = wµ. Also,

Γ = ∅ =⇒ w−1Ψ̃ = Φ− =⇒ Ψ̃ = wΦ− =⇒ Ψ = wΦ− ∩ Φ+ = Φ(w).

This is what we wanted to show.
Since the w · µ weight space in the chain complex C• is one dimensional and occurs in

Cn, we conclude, as in the case of trivial coefficients, that w ·µ is a weight in the cohomology
Hn(uJ , L(µ)). A corresponding weight vector in Cn is

v = fΦ(w) ⊗ vwµ,

where fΦ(w) is as in the proof of Theorem 4.1.1 and 0 6= vwµ ∈ L(µ)wµ. Fix γ ∈ Φ+
J ; then

xγv = xγfΦ(w) ⊗ vwµ + fΦ(w) ⊗ xγvwµ. We know from the proof of Theorem 4.1.1 that
xγfΦ(w) = 0. Suppose xγvwµ were not zero. Then it would be a weight vector in L(µ)
of weight wµ + γ. By W -invariance, µ + w−1γ would be a weight of L(µ). But w ∈ JW
and γ ∈ Φ+

J imply w−1γ ∈ Φ+, and this contradicts that µ is the highest weight of L(µ).
Therefore v is annihilated by the nilradical of the Levi subalgebra, and hence its image in
cohomology generates an LJ composition factor of Hn(uJ , L(µ)) isomorphic to LJ(w · µ).
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Note also that our argument proves that this composition factor occurs with multiplicity
one.

The LJ highest weights are in the closure of the bottom LJ alcove by Propositions 2.5.1
and 3.6.1, and thus the cohomology is completely reducible as an LJ -module. �

5. The Converse of Kostant’s Theorem

5.1. Existence of extra cohomology. The following theorem shows that there are
extra cohomology classes (beyond those given by Kostant’s formula) that arise in H•(u, k)
when char k = p and p < h − 1. This can be viewed as a converse to Theorem 4.1.1 in
the case when J = ∅. Examples in Section 6 will indicate that the situation is much more
subtle for J 6= ∅ (i.e., extra cohomology classes may or may not arise depending on the size
of J relative to the rank).

Theorem 5.1.1. Let k = Fp with p < h− 1. Then chH•(u, k) 6= chH•(u, C).

Proof. Fix a simple root α and let J = {α}; shortly we will choose α more precisely.
There exists a Lyndon-Hochschild-Serre spectral sequence

Ei,j
2 = Hi(u/uJ ,Hj(uJ , k)) ⇒ Hi+j(u, k).

Since dim u/uJ = 1, Ei,j
2 = 0 for i 6= 0, 1. Therefore, the spectral sequence collapses,

yielding

(5.1.1) Hn(u, k) ∼= Hn(uJ , k)u/uJ ⊕H1(u/uJ ,Hn−1(uJ , k)).

By the remarks at the beginning of Section 3.2, we can find explicit cocycles such that,
as a T -module, ⊕

w∈W

w · 0 ↪→ H•(u, k)

whereas by Lemmas 3.1.1 and 3.1.2, the only weights in H•(uJ , k) (or even in Λ•(u∗J)) of
the form w · 0 with w ∈ W occur when w ∈ JW . So we must have⊕

w∈Wr JW

w · 0 ↪→ H1(u/uJ ,H•(uJ , k)).

Thus it suffices to find “extra” cohomology in the first term on the right hand side of
(5.1.1), meaning a cohomology class in characteristic p which does not have an analog in
characteristic zero.

Since u/uJ is isomorphic to the nilradical of the Levi subalgebra lJ , the first part of the
proof of Theorem 4.1.1 shows that for w ∈ JW with l(w) = n, we have an explicit invariant
vector of weight w · 0 in Hn(uJ , k)u/uJ . Thus we get an inclusion⊕

w∈JW
l(w)=n

w · 0 ↪→ Hn(uJ , k)u/uJ ⊂ Hn(uJ , k).

By [Jan, Lemma 2.13] this induces an LJ -homomorphism from a sum of Weyl modules (for
LJ)

(5.1.2) φ : S =
⊕

w∈JW
l(w)=n

VJ(w · 0) → Hn(uJ , k)
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which is injective on the direct sum of the highest weight spaces. Next we claim that

(5.1.3) HdLJ
φ(S) =

⊕
w∈JW
l(w)=n

LJ(w · 0).

To see this, note first that φ(S) ∼= S/Ker φ, and Ker φ ⊂ RadLJ
S because of the injectivity

of φ on the highest weight spaces of the indecomposable direct summands VJ(w · 0) of S.
This means that

RadLJ
φ(S) ∼= RadLJ

(S/Ker φ) = (RadLJ
S)/Ker φ.

Thus

HdLJ
φ(S) = φ(S)/ RadLJ

φ(S)
∼= (S/Ker φ)/((RadLJ

S)/Ker φ)
∼= S/ RadLJ

S

∼=
⊕

w∈JW
l(w)=n

LJ(w · 0)

as claimed.
Now choose α to be a short simple root, and fix w̃ ∈ W such that w̃−1α = α0, the

highest short root. Then w̃ ∈ JW and

〈w̃ · 0 + ρ, α̌〉 = 〈w̃ρ, α̌〉 = 〈ρ, w̃−1α̌〉 = 〈ρ, α̌0〉 = h− 1 > p.

Thus λ := w̃ · 0 is not in the restricted region for LJ . Write λ = λ0 + pλ1 with λ0 ∈ (XJ)1
and 0 6= λ1 ∈ X+

J . There are two cases, according to whether or not φ(VJ(λ)) is a simple
LJ -module.
Case 1: φ(VJ(λ)) ∼= LJ(λ). By Steinberg’s tensor product theorem, LJ(λ) ∼= LJ(λ0) ⊗
LJ(λ1)(1). Since λ1 6= 0 (on J), LJ(λ1)(1) has dimension at least two, and u/uJ acts
trivially on it. So this produces at least a two-dimensional space of vectors in Hn(uJ , k)u/uJ

arising from LJ(λ) which produces “extra” cohomology.
Case 2: N := RadLJ

φ(VJ(λ)) 6= 0. Then N ⊂ RadLJ
φ(S) and

0 6= Nu/uJ ⊂ φ(S)u/uJ ⊂ Hn(uJ , k)u/uJ .

Since by (5.1.3) all the “characteristic zero” cohomology in Hn(uJ , k)u/uJ has already been
accounted for in HdLJ

φ(S), the vectors in Nu/uJ ⊂ RadLJ
φ(S) must be “extra” cohomology

in characteristic p. �

5.2. Explicit extra cohomology. In this section we exhibit additional cohomology that
arises in H•(u, k) where k = Fp in case Φ = An.

Theorem 5.2.1. Let p be prime and Φ be of type An where n = p + 1. Then the vector
p∑

i=1

f−α0 ∧ γ1 ∧ γ2 ∧ · · · ∧ γ̂i ∧ · · · ∧ γp

appears as extra cohomology in H2p−1(u, k), where γi = f−(α1+···+αi) ∧ f−(αi+1+···+αn).
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Proof. Let E =
∑p

i=1 f−α0 ∧ γ1 ∧ γ2 ∧ · · · ∧ γ̂i ∧ · · · ∧ γp. Consider the vector

f−α0 ∧ [d(f−α0)]
p−1 := f−α0 ∧ d(f−α0) ∧ d(f−α0) ∧ · · · ∧ d(f−α0)︸ ︷︷ ︸

p−1 times

,

with d(f−α0) = γ1 + γ2 + · · · + γp ∈ Λ2(u∗). First note by direct calculation one has
γi∧γj = γj∧γi and γi∧γi = 0. We can now apply the multinomial theorem for [d(f−α0)]

m =
[γ1 + γ2 + · · ·+ γp]m for m ≥ 2:

[d(f−α0)]
m = [γ1 + γ2 + · · ·+ γp]m

=
∑

r1,...,rp

(
m

r1, . . . , rp

)
[γ1]r1 ∧ [γ2]r2 ∧ · · · ∧ [γp]rp

where
∑p

i=1 ri = m and
(

m
r1,...,rp

)
= m!

r1!r2!...rp! . Consider the case when m = p − 1. Since
[γi]ri = 0 for ri ≥ 2, the only nonzero terms occur where ri = 0 for some i, and rj = 1 for
all j 6= i. We have

[d(f−α0)]
p−1 =

p∑
i=1

(
p− 1

0, 1, . . . , 1

)
(γ1 ∧ · · · ∧ γ̂i ∧ · · · ∧ γp)

= (p− 1)!
p∑

i=1

(γ1 ∧ · · · ∧ γ̂i ∧ · · · ∧ γp).

So we have that f−α0 ∧ [d(f−α0)]
p−1 = (p − 1)!E. Since the terms in the above sum

are linearly independent, this shows that E 6= 0. To prove that E ∈ Ker d, we look at
f−α0 ∧ [d(f−α0)]

p−1. Since d is a differential, d(d(f−α0)) = 0. Also note we can apply the
multinomial theorem again to get [d(f−α0)]

p = p!(γ1∧γ2∧ · · ·∧γi∧ · · ·∧γp). Consequently,

d
(
f−α0 ∧ [d(f−α0)]

p−1
)

= d(f−α0) ∧ [d(f−α0)]
p−1 − f−α0 ∧ d

(
[d(f−α0)]

p−1
)

= [d(f−α0)]
p − f−α0 ∧

(
p−1∑
i=1

d(d(f−α0)) ∧ [d(f−α0)]
p−2

)
= p! (γ1 ∧ γ2 ∧ · · · ∧ γp).

It now follows that

d(E) = d

(
1

(p− 1)!
(f−α0 ∧ [d(f−α0)]

p−1)
)

=
p!

(p− 1)!
(γ1 ∧ γ2 ∧ · · · ∧ γp)

= p (γ1 ∧ γ2 ∧ · · · ∧ γp).

Thus d(E) = 0 in characteristic p (but not in characteristic 0).
We need to verify that E is not in the image of the previous differential. This will follow

by demonstrating that Λ2p−2(u∗)−pα0 = 0 because the differentials respect weight spaces.
Any weight in Λ2p−2(u∗) is of the form β1+β2+· · ·+β2p−2 where the βi are distinct negative
roots. Observe that 〈β1 + β2 + · · ·+ β2p−2, α̌0〉 ≥ −2p + 1. One can deduce this because for
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each i, 〈βi, α̌0〉 = 0,±1,±2 and is equal to −2 if and only if βi = −α0. On the other hand,
〈−pα0, α̌0〉 = −2p, thus Λ2p−2(u∗)−pα0 = 0. �

6. Examples for H•(uJ , Fp)

The following low rank examples were calculated using our computer package developed
in MAGMA [BC, BCP]. Recall that the cohomology has a palindromic behavior so in the
A4 table the degrees are only listed up to half the dimension of uJ . Set Hn = dim Hn(uJ , k).

Type A3, h− 1 = 3

J p H0 H1 H2 H3 H4 H5 H6

∅ 0 1 3 5 6 5 3 1
2 1 3 6 8 6 3 1

{1} or {3} 0, 2 1 3 6 6 3 1
{2} 0, 2 1 4 5 5 4 1

{1, 3} or {2, 4} 0, 2 1 4 6 4 1
{1, 2} or {2, 3} 0, 2 1 3 3 1

Type A4, h− 1 = 4

J p H0 H1 H2 H3 H4 H5 H6 H7

∅ 0 1 4 9 15 20 22 . . . . . .
2 1 4 11 25 38 42 . . . . . .
3 1 4 9 17 25 28 . . . . . .

{1} or {4} 0 1 4 10 19 26 . . . . . . . . .
2 1 4 12 25 32 . . . . . . . . .
3 1 4 10 20 27 . . . . . . . . .

{2} or {3} 0 1 5 12 19 23 . . . . . . . . .
2 1 5 12 23 33 . . . . . . . . .
3 1 5 12 20 24 . . . . . . . . .

{1, 3} or {2, 4} 0, 2, 3 1 6 13 23 30 . . . . . . . . .
{1, 4} 0, 2, 3 1 4 14 25 28 . . . . . . . . .

{1, 2} or {3, 4} 0, 3 1 4 12 18 . . . . . . . . . . . .
2 1 4 12 19 . . . . . . . . . . . .

{2, 3} 0, 3 1 6 14 14 . . . . . . . . . . . .
2 1 6 14 15 . . . . . . . . . . . .

{1, 3, 4} or {1, 2, 4} 0, 2, 3 1 6 15 20 . . . . . . . . . . . .
{1, 2, 3} or {2, 3, 4} 0, 2, 3 1 4 6 . . . . . . . . . . . . . . .
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Type G2, h− 1 = 5

J p H0 H1 H2 H3 H4 H5 H6

∅ 0 1 2 2 2 2 2 1
2, 3 1 3 6 8 6 3 1

{1} 0, 2 1 4 5 5 4 1
3 1 4 7 7 4 1

{2} 0 1 2 3 3 2 1
2 1 3 6 6 3 1
3 1 4 7 7 4 1

7. Further Questions

The results in the preceding sections and our low rank examples naturally suggest the
following open questions which are worthy of further study.

(7.1) Let G be a simple algebraic group over Fp and g = Lie G. Determine a maximal
c(J, p) > 0 such that

chHn(uJ , C) = chHn(uJ , Fp)
for 0 ≤ n ≤ c(J, p).

(7.2) Let Φ = An with |∆| = n.

a) Does |∆− J | > p imply that chH•(uJ , C) 6= chH•(uJ , Fp)?

b) Does |∆− J | < p imply that chH•(uJ , C) = chH•(uJ , Fp)?

We have seen that when |∆ − J | = p either conclusion can hold in the example where
Φ = A4 and |∆− J | = p = 2.

c) What is the appropriate formulation of parts (a) and (b) when Φ is of arbitrary type?

(7.3) Let G be a simple algebraic group over Fp and g = Lie G. Assume that p is a good
prime. Let N1(g) = {x ∈ g : x[p] = 0} (restricted nullcone). From work of Nakano, Parshall
and Vella [NPV], there exists J ⊆ ∆ such that N1(g) = G · uJ (i.e., closure of a Richardson
orbit).

Does there exist J ⊆ ∆ with N1(g) = G · uJ such that

chH•(uJ , C) = chH•(uJ , Fp)?

(7.4) Let G be a simple algebraic group over Fp and g = Lie G. Compute

chHn(uJ , Fp)

for all p. It would be even better to describe the LJ -module structure.

Solving (7.4) would complete the analog of Kostant’s theorem for the trivial module
for all characteristics. One might be able to use (7.3) as a stepping stone to perform this
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computation. Moreover, this calculation would have major implications in determining
cohomology for Frobenius kernels and algebraic groups (cf. [BNP]).
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