Relations among $\pi_1(X, x_0)$, $p^{-1}(x_0)$ and $G(\tilde{X})$

Let X be a NICE space (i.e., X is path-connected, locally path-connected, and semi-locally simply connected). Let

$$p : (\tilde{X}, \tilde{x}_0) \to (X, x_0)$$

be a path-connected covering. (i.e., \tilde{X} is path-connected). We want to understand relations between

$$\pi_1(X, x_0) \quad \text{the fundamental group}$$
$$G(\tilde{X}) \quad \text{the deck transformation group}$$
$$p^{-1}(x_0) \quad \text{the pre-image of the base-point}$$

We shall denote the subgroup $p_*(\pi_1(\tilde{X}, \tilde{x}_0))$ by H.

$$\psi : \pi_1(X, x_0) \longrightarrow p^{-1}(x_0)$$

is given by $\alpha \longrightarrow \tilde{\alpha}(1)$.

Let $\alpha \in \pi_1(X, x_0)$. It is represented by a loop in X based at x_0. Lift this loop to a path $\tilde{\alpha}$ in \tilde{X} starting at \tilde{x}_0. In general, $\tilde{\alpha}$ is not a loop, but the end point $\tilde{\alpha}(1) \in p^{-1}(x_0)$. Thus, ψ is defined by $\psi(\alpha) = \tilde{\alpha}(1)$.

• This ψ is onto.

Let $\tilde{x}_1 \in p^{-1}(x_0)$. Find a path $\tilde{\gamma}$ in \tilde{X} joining \tilde{x}_0 to \tilde{x}_1. Then $p \circ \tilde{\gamma}$ is a loop in X based at x_0. Let $\alpha = [p \circ \tilde{\gamma}] \in \pi_1(X, x_0)$. Then, by construction, $\tilde{\psi}(\alpha) = \tilde{x}_1$.

• This ψ is not one-one. Suppose $\alpha, \beta \in \pi_1(X, x_0)$ with $\psi(\alpha) = \psi(\beta)$. This means $\tilde{\alpha}(1) = \tilde{\beta}(1)$ so that $\tilde{\alpha} \tilde{\beta}$ is a loop in \tilde{X} based at \tilde{x}_0. In other words,

$$\alpha \beta^{-1} = (p \circ \tilde{\alpha})(p \circ \tilde{\beta}) = p \circ (\tilde{\alpha} \ast \tilde{\beta}) \in p_*(\pi_1(\tilde{X}, \tilde{x}_0)) = H,$$

or equivalently, $\alpha H = \beta H$.

Conversely, suppose $\alpha H = \beta H$. Then $\alpha \beta^{-1} \in H$, and it lifts to a loop (not just a path) in \tilde{X} based at \tilde{x}_0. That implies the end points of $\tilde{\alpha}$ and $\tilde{\beta}$ coincide. We have shown that $\tilde{\psi} : \pi_1(\tilde{X}, \tilde{x}_0) \longrightarrow p^{-1}(x_0)$ factors through $\pi_1(X, x_0)/H$, and

$$\psi : \pi_1(X, x_0) \longrightarrow \pi_1(X, x_0)/H \overset{\tilde{\psi}}\longrightarrow p^{-1}(x_0) \quad \tilde{\psi} \text{ is bijective}$$
Now we try to relate $\pi_1(X,x_0)$ with the deck transformation group $G(\tilde{X})$. For $\alpha \in \pi_1(X,x_0)$, lift α to a path $\tilde{\alpha}$ in \tilde{X} starting at \tilde{x}_0. Then $\tilde{\alpha}(1) \in p^{-1}(x_0)$.

Consider the lifting problem

\[
\begin{array}{ccc}
(\tilde{X}, \tilde{\alpha}(1)) & \xrightarrow{\phi(\alpha)} & (\tilde{X}, \tilde{x}_0) \\
p & & \downarrow p \\
(\tilde{X}, x_0) & \longrightarrow & (X, x_0)
\end{array}
\]

Such a $\phi(\alpha)$ exists if and only if $p_* (\pi_1(\tilde{X}, \tilde{x}_0)) \subset p_* (\pi_1(\tilde{X}, \tilde{\alpha}(1)))$.

What is a relation between these two groups $p_* (\pi_1(\tilde{X}, \tilde{x}_0))$ and $p_* (\pi_1(\tilde{X}, \tilde{\alpha}(1)))$? Let $\tilde{\gamma}$ be a path in \tilde{X} from \tilde{x}_0 to $\tilde{\alpha}(1)$. Then $\gamma = p \circ \tilde{\gamma}$ is a loop in X, and

\[p_* (\pi_1(\tilde{X}, \tilde{\alpha}(1))) = \gamma^{-1} \cdot p_* (\pi_1(\tilde{X}, \tilde{x}_0)) \cdot \gamma.\]

Therefore, the condition becomes $H = \gamma^{-1} \cdot H \cdot \gamma$, or equivalently, γ normalizes H. Thus, we have a map

\[\phi : N_{\pi_1(X,x_0)}(H) \longrightarrow G(\tilde{X})\]

ϕ is given by $\alpha \longrightarrow \phi(\alpha)$.

- This ϕ is onto.

Let $\tilde{f} : \tilde{X} \to X$ be a deck transformation, say with $\tilde{f}(\tilde{x}_0) = \tilde{x}_1$. Since $p = p \circ \tilde{f}$, we have a commuting diagram

\[
\begin{array}{ccc}
(\tilde{X}, \tilde{x}_1) & \xrightarrow{\tilde{f}} & (\tilde{X}, \tilde{x}_0) \\
p & & \downarrow p \\
(\tilde{X}, x_0) & \longrightarrow & (X, x_0)
\end{array}
\]

We wish to find $\alpha \in \pi_1(X,x_0)$ such that $\alpha \in N_{\pi_1(X,x_0)}(H)$ and $\phi(\alpha) = \tilde{f}$. Pick a path $\tilde{\alpha}$ from \tilde{x}_0 to \tilde{x}_1. Then $\alpha = p \circ \tilde{\alpha}$ is loop in X, and becomes an element of $\pi_1(X,x_0)$. From $p = p \circ \tilde{f}$,

\[p_*(\pi_1(\tilde{X}, \tilde{x}_0)) = p_*(\pi_1(\tilde{X}, \tilde{\alpha}(1))).\]

Therefore, there is a lift $\phi(\alpha)$. Consequently, we have two maps \tilde{f} and $\phi(\alpha)$ fitting the diagram. By the uniqueness of the lift, we see $\tilde{f} = \phi(\alpha)$.

- This ϕ is a homomorphism.

We have denoted a lift of $\alpha \in \pi_1(X,x_0)$ starting at \tilde{x}_0 simply by $\tilde{\alpha}$. Let’s write it by $\tilde{\alpha}_{\tilde{x}_0}$ (to denote the initial point). Then clearly,

\[\tilde{\alpha} \circ \beta_{\tilde{x}_0} = \tilde{\alpha}_{\tilde{x}_1} \circ \beta_{\tilde{x}_0}\]

where $\tilde{x}_1 = \beta_{\tilde{x}_0}(1)$. This proves that $\phi(\alpha \beta) = \phi(\alpha) \circ \phi(\beta)$.
• This ϕ is not one-one.

Suppose $\alpha, \beta \in \pi_1(X, x_0)(H)$ and $\phi(\alpha) = \phi(\beta)$. Then $\tilde{\alpha}(1) = \tilde{\beta}(1)$. Then $\tilde{\alpha} \ast \tilde{\beta}$ is a loop in \tilde{X}. Thus,

$$\alpha\beta^{-1} = p \circ (\tilde{\alpha} \ast \tilde{\beta}) \in p_\ast(\pi_1(\tilde{X}, \tilde{x}_0)) = H.$$

Conversely, if $\alpha\beta^{-1} \in H$, then the end points of the lifts $\tilde{\alpha}$ and $\tilde{\beta}$ coincide. By the uniqueness of the lifts, we have $\phi(\alpha) = \phi(\beta)$. We proved:

\[
N_{\pi_1(X, x_0)}(H) \rightarrow N_{\pi_1(X, x_0)}(H)/H \xrightarrow{\tilde{\psi}} G(\tilde{X}) \quad \tilde{\psi} \text{ is bijective}
\]

Group action

Definition A group G acts on a space X if there is a map

$$\varphi : G \times X \rightarrow X$$

satisfying the following two conditions (writing $\varphi(g, x)$ by $g \cdot x$):

1. For every $x \in X$, $e \cdot x = x$ (where $e \in G$ is the identity element).
2. For every $g, h \in G$ and $x \in X$, $(gh) \cdot x = g \cdot (h \cdot x)$.

For a completely regular space, the set of all self homeomorphisms of X becomes a group, denoted by $\text{TOP}(X)$. The above definition of an action is the same as having a group homomorphism

$$\psi : G \rightarrow \text{TOP}(X).$$

The condition (1) says $\psi(e)$ is the identity map of X; the condition (2) says ψ is a group homomorphism.

An action is effective if, for every $g \in G$, there exists $x \in X$ such that $g \cdot x \neq x$. It is the same as the homomorphism ψ is injective.

An orbit passing through $y \in X$ is the subset of X

$$Gy = \{g \cdot y : \ g \in G\} \subset X.$$

Note that $Gy \subset X$ and $G_y \subset G$.

The stabilizer (=isotropy subgroup) of the G-action at $y \in X$ is

$$G_y = \{g \in G : \ g \cdot y = y\} \subset G.$$
Suppose a group \(G \) acts on a space \(X \). The *orbit space* \(G \backslash X \) is the quotient \(X/\sim \) where
\[
x \sim y \text{ if and only if } \exists g \in G : y = g \cdot x
\]
(with the quotient topology).

Example 1. (a) Let \(\text{GL}_2 \mathbb{R} \) be the group of all non-singular \(2 \times 2 \) matrices. Then it acts on \(\mathbb{R}^2 \) as matrix multiplications. Namely, for \(A \in \text{GL}_2 \mathbb{R} \) and \(x \in \mathbb{R}^2, \ A \cdot x = Ax \).

(b) The group \(G = \mathbb{R}^2 \) acts on the space \(X = \mathbb{R}^2 \) as
\[
a \cdot x = a + x
\]
for \(a \in G \) and \(x \in X \). So \(a \in \mathbb{R}^2 \) is a translation by \(a \). Inside \(G = \mathbb{R}^2 \), there is \(\mathbb{Z}^2 \) generated by \((1, 0)\) and \((0, 1)\). Then \(\mathbb{Z}^2 \) acts on \(\mathbb{R}^2 \). The orbit space is \(\mathbb{Z}^2 \backslash \mathbb{R}^2 \), a 2-torus.

(c) \(\text{Aff}(2) = \mathbb{R}^2 \rtimes \text{GL}_2 \mathbb{R} \) is defined, as a set \(\mathbb{R}^2 \times \text{GL}_2 \mathbb{R} \), but the group operation is given by
\[
(a, A) \cdot (b, B) = (a + Aa, AB).
\]
It is called the *affine group* of dimension 2. It acts on \(\mathbb{R}^2 \) as
\[
(a, A) \cdot x = a + Ax
\]
\(\text{Aff}(2) = \mathbb{R}^2 \rtimes \text{GL}_2 \mathbb{R} \) contains \(\text{E}(2) = \mathbb{R}^2 \rtimes \text{O}(2) \) (where \(\text{O}(2) \) is the *orthogonal group* \((AA^T = I) \)). The group \(\text{E}(2) \) is called the *Euclidean isometry group*.

Example 2. Let \(\text{SL}_2 \mathbb{R} \) be the group of all \(2 \times 2 \) matrices of determinant 1. It acts on \(\mathbb{R}^2 \) as matrix multiplications (since it is a subgroup of \(\text{GL}_2 \mathbb{R} \) in the above example).

There is a completely different action of \(\text{SL}_2 \mathbb{R} \) on \(\mathbb{H}^2 = \{ z = x + iy \in \mathbb{C} : y > 0 \} \), as linear fractional transformations. That is, for
\[
A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \text{SL}_2 \mathbb{R} \text{ and } z \in \mathbb{H}
\]
\(A \cdot z \) is defined by
\[
A \cdot z = \frac{az + b}{cz + d}.
\]

HW4. Show this is an action. That is, show it satisfies the two conditions for the action.

It is not effective because \(-I \in \text{SL}_2 \mathbb{R}\) acts as the identity map. That is, the map \(\psi \) has a kernel \(\mathbb{Z}_2 = \{ \pm I \} \).

Action of \(\pi_1(X, x_0) \) on \(p^{-1}(x_0) \)

The action
\[
\pi_1(X, x_0) \times p^{-1}(x_0) \rightarrow p^{-1}(x_0)
\]
can be defined as follows: For $\alpha \in \pi_1(X, x_0)$ and $\tilde{x} \in p^{-1}(x_0)$,

$$\alpha \cdot \tilde{x} = \text{the end point of the lift of the loop } \alpha \text{ starting at } \tilde{x}$$

HW1. Prove this is an action.

HW2. This action is not effective. For example, if $\alpha \in p_*(\pi_1(\tilde{X}, \tilde{x}_0))$, then $\alpha \cdot \tilde{x}_0 = \tilde{x}_0$. In fact, the isotropy subgroup of $\pi_1(\tilde{X}, \tilde{x}_0)$-action at the point \tilde{x}_0 is exactly $p_*(\pi_1(\tilde{X}, \tilde{x}_0))$.

HW3. The “evaluation” of this action at the base-point \tilde{x}_0 is exactly the map $\psi : \pi_1(X, x_0) \longrightarrow p^{-1}(x_0)$.

If $p : (\tilde{X}, \tilde{x}_0) \rightarrow (X, x_0)$ is a universal covering, then

$$\pi_1(X, x_0) \cong p^{-1}(x_0) \cong G(\tilde{X})$$

because H is trivial.

Next: Properly discontinuous actions, Geometry