11.10: Taylor and Maclaurin Series

We're going to look at writing $f(x)=\sin x$ as a series (which will be called its Taylor series). Let's suppose $\sin x=\sum_{n=0}^{\infty} c_{n} x^{n}$. How can we find c_{0} ? Find c_{0}.

How can we find c_{1}, c_{2}, and c_{3} ? Find c_{1}, c_{2}, and c_{3}.

Looking at the previous work, what is c_{n} in general?

Write the definition of a Taylor series centered at $\mathbf{0}$ (this is also called a Maclaurin series).

Write the definition of a Taylor series centered at a.

1. Find the Maclaurin series of $f(x)=x e^{x}$.

Important Series	
$\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$	$R=1$
$e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$	$R=\infty$
$\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$	$R=\infty$
$\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$	$R=\infty$
$\arctan x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$	$R=1$
$\ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}$	$R=1$

2. Find the sum of the series $\sum_{n=0}^{\infty} \frac{x^{4 n}}{n!}$ when $x=3$.
3. Use a series to find the limit:

$$
\lim _{x \rightarrow 0} \frac{x-\ln (1+x)}{x^{2}}
$$

Review

More Geometric Series

It's possible to evaluate geometric series even if they don't start at 1! In these examples, our a is the first term in the series and r is the second term divided by the first term. In these problems, our series converges if $|r|<1$.

1. Find the sum $\sum_{i=4}^{\infty} \frac{(-3)^{i+1}}{4^{i}}$
2. Find the sum $\sum_{n=3}^{\infty} \frac{1+(-3)^{n+1}}{2^{(2 n)}}$

The Integral Test

If our summand is a decreasing, positive, and continuous function AND we can integrate it, then $\sum_{n=k}^{\infty} f(n)$ converges or diverges whenever $\int_{k}^{\infty} f(x) d x$ converges or diverges. Notice that this does not tell us what the sum is, but only if the series converges or diverges.

1. Determine whether $\sum_{n=1}^{\infty} \frac{n^{3}}{n^{4}+4}$ is convergent or divergent.
2. Determine whether $\sum_{n=1}^{\infty} k e^{-k^{2}}$ is convergent or divergent.
3. Determine whether $\sum_{n=1}^{\infty} \frac{\ln n}{n^{2}}$ is convergent or divergent.

Important Series 4: The p-series

The p-series is any series $\sum_{n=0}^{\infty} \frac{1}{n^{p}}$. Notice n is our index and p is a number! If this was switched, it would be a geometric series. This series converges when $p>1$ and diverges when $p \leq 1$.

1. Determine whether $\sum_{n=1}^{\infty} \frac{1}{n^{\sqrt{2}}}$ is convergent or divergent.
2. Determine whether $\sum_{k=5}^{\infty} \frac{1}{(k-2)^{4}}$ is convergent or divergent.

Further Problems: 1, 2, 3, 4, 5, 6, 7, 8, 17, 21, 23

