11.8: Power Series

1. Write the definition of a power series.
2. If we replace c_{n} with a constant, a, what type of series is this? When is this convergent? Hint: Plug in a constant r.
3. Using the ratio test, when is $\sum_{n=0}^{\infty} n!x^{n}$ convergent?
4. Write the definition of a power series centered at a.
5. Using the ratio test, when does the series $\sum_{n=0}^{\infty} \frac{(x-3)^{n}}{n}$ converge? Sketch this interval on a number line.

Fact: If we have a power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$, then one of the following occurs:

- The series always converges.
- The series only converges when $x=0$.
- The series converges when $|x-a|<R$.

Above, R is called the radius of convergence. When $x=a+R$ or $x=a-R$, we will have to test for convergence separately.
6. Find the radius of convergence and interval of convergence of $\sum_{n=0}^{\infty} \frac{n(x+2)^{n}}{3^{n+1}}$.

Further problems: 1, 2, 3, 7, 8, 14, 15, 17, 27

11.9: Representations of Functions as a Power Series

1. What is $\sum_{n=0}^{\infty} r^{n}$ equal to if $r<1$?
2. Using 1 , what is $\sum_{n=0}^{\infty} x^{n}$ equal to? What is the interval of convergence?
3. Using 2, write $\frac{1}{1+x^{2}}$ as a power series. What is the interval of convergence?
4. Using 2 , write $\frac{1}{x+2}$ as a power series. What is the interval of convergence?
5. Using 4, write $\frac{x^{3}}{x+2}$ as a power series. What is the interval of convergence?

Note: We can differentiate or integrate a power series by differentiating or integrating every term seperately.
6. Using the above note, write $\frac{1}{(1-x)^{2}}$ as a power series. What is the interval of convergence?
7. Using the above note, write $\ln (1+x)$ as a power series. What is the interval of convergence?
8. Evaluate $\int \frac{1}{1+x^{7}} d x$ by first writing it as a power series, then integrating.

Review

What is a series?

A series is a sum. For example, $1+2+3+4+5+\ldots$. Frequently, we will shorthand this as $\sum_{n=1}^{\infty} n$. We can see these are the same if we plug in $n=1,2,3,4$, and 5 into the summation. We write an arbitrary sum as $\sum a_{n}$, or maybe $\sum_{n=1}^{\infty}$ if we know the indices.
The partial sum of a series s_{n} is adding up the first n terms, i.e. $s_{4}=a_{1}+a_{2}+a_{3}+a_{4}$.
Since we can't add up infinitely things by hand (that would take a really long time!), we say $\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}$. In other words, the sum is the limit of the partial sums.

Often it is hard to tell what the sum of a series is, but we can tell if it is convergent or not using a variety of tests for convergence.

Important Series 1: Geometric Series

The geometric series is a series of the form $\sum_{n=1}^{\infty} a r^{n-1}$. For example, $\sum_{n=1}^{\infty} 3\left(\frac{1}{2}\right)^{n-1}$.
Geometric series are really really nice! Why? Because we know exactly when they converge AND! what they converge to! It is often hard to find out when a series converges. For example, if you can tell me what values of s give $\sum_{n=1}^{\infty}\left(\frac{1}{n}\right)^{s}=0$, you would receive 1 million dollars $\sqrt{1}^{[1}$ Fact: If $|r| \geq 1$, then the series is divergent, i.e. it does not converge. If $|r|<1$, then $\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r}$.
Examples:

1. Is the series $\sum_{n=1}^{\infty} 2^{2 n} 3^{1-n}$ convergent or divergent?
2. Find the sum of the geometric series $5-\frac{10}{3}+\frac{20}{9}-\frac{40}{26}+\ldots$.
[^0]
Important Series 2: The Harmonic Series

The harmonic series is:

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

This series diverges! This series frequently helps us show the divergence of other series.
Important fact: A series is divergent if $\lim _{n \rightarrow \infty} a_{n} \neq 0$. However, if $\lim _{n \rightarrow \infty} a_{n}=0$, we can't say whether a series converges or not. For example, notice $\lim _{n \rightarrow \infty} \frac{1}{n}=0$, but the harmonic series is divergent!

Important Series 3: The Telescoping Series

A telescoping series is any series that cancels out in pairs.

- For example, find the sum $\sum_{i=1}^{\infty} \frac{1}{n(n+1)}$.
- Find the sum $\sum_{i=1}^{\infty} \frac{2}{n(n+2)}$.

[^0]: ${ }^{1}$ https://en.wikipedia.org/wiki/Riemann_hypothesis

