11.10: Additional Problems Pt. 2

1. Find the Taylor series for $\sin x \cos x$.
2. Find the Taylor series for $\frac{e^{x}}{\ln (1+x)}$.
3. Compute the first 5 terms of the Taylor series for $\sqrt[3]{(2+x)^{2}}$.

Remainders

If we add the first n terms of a Taylor series, the remainder is:

$$
\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1} \text { for }|x-a| \leq d
$$

where $\left|f^{(n+1)}(x)\right| \leq M$ for $|x-a| \leq d$

This measures the maximum in the error for stopping at only n terms.

Exercises

1. Find a bound on the remainder if you compute the Taylor series $f(x)=e^{x}$ out to 5 terms at $x=0$. and $x=1$
2. Find a bound on the remainder if you compute the Taylor series $f(x)=\sin x$ out to 12 terms at any x.

Review: Limit Comparison Test

Recall that if

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c
$$

where c is finite and positive, then $\sum_{n=1}^{\infty} a_{n}$ converges or diverges whenever $\sum_{n=1}^{\infty} b_{n}$ converges or diverges.

To build intuition: The idea is that if $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=3$, for example, then a_{n} is *roughly* $3 \cdot b_{n}$ for really really large n. So if $\sum b_{n}$ converges, $\sum a_{n}$ should also converge since, towards the end of the sum, the sum will be about three times the sum of b_{n} 's.

The goal for these problems is to find another series that the above limit is finite.

- Determine whether $\sum_{n=1}^{\infty} \frac{1}{2^{n}-1}$ converges or diverges.
- Determine whether $\sum_{n=1}^{\infty} \frac{2 n^{2}+3 n}{\sqrt{5+n^{5}}}$ converges or diverges.

