Inverse Functions

Exploring One to One Functions

1. Graph $f(x)=x^{2}$
2. This function is not one-to-one. We can see this if we draw the horizontal line $y=1$, which intersects the graph more than once! This is called the horizontal line test. Why does this stop $f(x)=x^{2}$ from having an inverse function?
3. Graph $g(x)=\frac{1}{1-x}$
4. Is $g(x)$ one-to-one? If so, find the inverse function.

Finding Inverse Functions

Find the inverse function of the following:

1. $f(x)=1+\sqrt{2+3 x}$
2. $y=\frac{4 x-1}{2 x+3}$
3. $y=x^{2}-x, x \geq 2$

Why do we need to restrict the domain here?

Derivatives of Inverse Functions

We should memorize the formula:

$$
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Use this formula to find the derivative of the f^{-1} :

1. $f(x)-\sqrt{4 x+3}$
2. $f(x)=2-x^{4}, x \geq 0$
3. $f(x)=3 x^{3}+4 x^{2}+6 x+5$ at $x=5$ This is the derivative at the value $x=5$, so your solution should be a number.
4. $f(x)=3+x^{2}+\tan \left(\frac{\pi x}{2}\right),-1<x<1$ at $x=3$

Logarithms

Three Important Rules

- $\log _{a}(x y)=\log _{a} x+\log _{a} y$
- $\log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{b} y$
- $\log _{a}\left(x^{r}\right)=r \log _{a} x$

Expand the following:

1. $\ln \sqrt{a b}$
2. $\ln \left(\frac{x^{2}}{y^{2} z^{4}}\right)$
3. $\ln (x+y)$ Be very careful here!

How do we evaluate a logarithm?

When we see $\log _{2} 8$, it is asking for the power of 2 that gives 8 . Thus, $\log _{2} 8=3$ because $2^{3}=8$.

Try: $\log _{3} 81$ and $\ln e^{7}$. What about $\ln 108 ?$

Differentiation

Differentiate the following:

1. $\ln x$
2. $\ln (\sin x)$
3. $x^{3} \ln x$

Integration

Evaluate the following integrals:

1. $\int \frac{3}{x} d x$
2. $\int\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)^{2} d x$
3. $\int \frac{x^{2}+x+1}{x} d x$
4. $\int \frac{\cos x}{2+\sin x} d x$
