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Chapter 1

Introduction

Complex semisimple Lie algebras have the complete reducibility property. Each
complex finite-dimensional irreducible representation of a complex semisimple Lie
algebra is parameterized by a highest weight. Each finite-dimensional irreducible
representation also has a unique weight diagram including a specific multiplicity
for each weight; the multiplicity of a weight is equal to the dimension of the cor-
responding weight space in the representation. These multiplicities have been the
topic of many research efforts. Several formulas for computing these multiplici-
ties have been developed by Freudenthal [4], Kostant [9], Lusztig [12], Littelmann
[11], and Sahi [14]. Many of these formulas are general and recursive.

In Chapter 2, we will focus on the weight multiplicities of finite-dimensional
representations of the classical rank two Lie algebra sp(4,C) corresponding to
the Lie group Sp(4). These multiplicities are surprisingly difficult to obtain con-
sidering there is a nice formula for the weight multiplicities for another classical
rank two Lie algebra, s[(3,C). In 2004 in [3], Cagliero and Tirao gave an explicit
closed formula for the weight multiplicities of any irreducible representation of

this Lie algebra, and to the best of our knowledge, this was the first paper to do



so. The method of proof in [3] employed a Howe duality theorem and the explicit
decomposition of tensor products of exterior powers of fundamental representa-
tions of Sp(4). In this note, we will provide an alternate, elementary approach to
finding an explicit closed formula for the weight multiplicities of any irreducible
representation of sp(4, C).

We first present a useful identity between finite-dimensional representations
of the rank 2 symplectic Lie algebra. In Section 2.2, using a basic approach, we
develop this first identity. It is based on a general result involving multilinear
algebra for symmetric tensors; see Proposition 2.1 and Corollary 2.2 from Section
2.1. While these are certainly well known to experts, we have included proofs
for completeness. Proposition 2.3 (and subsequently Corollary 2.4) follows from
this together with the explicit determination of certain highest weight vectors
occurring in a tensor product of symmetric powers of the standard representation
of sp(4,C). Corollary 2.4 then shows how an irreducible representation can be
expressed as a linear combination of tensor products of symmetric powers of
the standard representation. These results can also be found using Littelmann’s
paper [10] and Young tableaux or using a formula involving characters from
Section 24.2 in [5].

In Section 2.3, we determine the weight multiplicities of any dominant weight
in a tensor product of symmetric powers of the standard representation. In
Section 2.4, we use the results of Sections 2.2 and 2.3 to create an explicit closed
formula for the weight multiplicities of the dominant weights in any irreducible
representation of sp(4, C).

In Chapter 3, Section 3.1, we introduce the concepts of L- and e-factors for
Sp(4), which are calculated for a given representation of Sp(4) and a fixed rep-

resentation of the real Weil group, ¢ : Wg — Sp(4), parameterized by two odd



integers k£ and [. As usual, we only need to consider irreducible representations
of Sp(4). The results of Section 2.2 can be adapted to reduce the problem of
calculating the archimedean factors of an irreducible representation to the de-
termination of the archimedean factors of a tensor product of symmetric powers
of the standard representation. The L- and e-factors of a representation require
explicit multiplicity information. Theorem 2.5 is then recalled to help with this
calculation of archimedean factors of a tensor product of symmetric powers of the
standard representation. Section 3.2 contains a description of how to calculate
the L- and e-factors of any representation of Sp(4).

Any irreducible representation of sp(2m, C) can be expressed as a formal sum
of tensor products of symmetric powers of the standard representation. This is
the main result of Chapter 4 along with an algorithm for determining such formal
sums and two formulas. These results are already known as in [5], Section 24.2, by
appropriately interpreting a proposition involving the character of an irreducible
representation of sp(2m,C), but we will provide an alternate approach using
Littelmann’s paper [10] and combinatorial arguments.

In [1] and [16], the authors, Akin and Zelevinskii respectively, independently
prove an identity expressing any irreducible representation of GL(n, C) as a formal
sum of tensor products of symmetric powers of the standard representation using
resolutions, so the ability to write an irreducible representation as a formal sum
of tensor products of symmetric powers of the standard representation has been
of interest for other classical Lie algebras as well.

In Section 4.1 we present a useful identity between finite-dimensional repre-
sentations of the rank m symplectic Lie algebra by generalizing the results of
Section 2.2. Proposition 4.1 (and subsequently Corollary 4.2) follows from the

general multilinear algebra results of Section 2.1 together with the explicit de-



termination of certain highest weight vectors occurring in a tensor product of
symmetric powers of the standard representation of sp(2m,C). Corollary 4.2
then shows how an irreducible representation with particular highest weights can
be expressed as a linear combination of tensor products of symmetric powers of
the standard representation.

In Section 4.2, Littelmann’s generalization of the Littlewood-Richardson rule
in [10] is applied to Sp(2m) to prove the main result of Chapter 4, Theorem
2.5. This theorem states that any irreducible representation of sp(2m, C) can be
expressed as a formal sum of tensor products of symmetric powers of the standard
representation, and the method of proof creates an algorithm for finding such a
sum. In Section 4.3, we present a refinement of the algorithm from the proof
along with a formula, which simplifies the process for finding the formal sum.

In Section 4.4, we show examples for the symplectic Lie algebras of rank 2
and 3 using the results of Sections 4.2 and 4.3. At the end of Chapter 4 in Section
4.5, we present a final formula that explicitly determines the formal sum for a

general case.



Chapter 2

A closed formula for weight

multiplicities for sp(4, C)

2.1 A result on symmetric tensors

For a positive integer n, let S,, be the symmetric group on n letters. For this
section, let V' be a finite-dimensional vector space over a field with characteristic
zero, F'. S, acts linearly on V& by o(v1 ® ... @ vp) = U5-11) @ ... @ Vp-1(,. Let
sym : V¥ — V®" be the usual symmetrization map, i.e., sym(v) = Z o(v).
The kernel of this map is spanned by all elements of the form v—o(v) fos isé yen
and o € S,,. We denote by Sym" (V') the image of sym or equivalently the quotient
of V®" by the kernel of sym.

The proof of this definition of the kernel is as follows.

sym(v —o(v)) = > Tw—0o@)=> 7)) =Y 70(v)

7€S5n TESR TESK
- Z 7(v) = 2(70*1)0(7}) = Z 7(v) — Z 7(v) = 0.
TESH TESH TESH TESH



Therefore, ker(sym) D (v —o(v) |v € V¥" 0 € S,).

If v € ker(sym), then Z o(v) =0. Sov+ Z o(v) =0, and

o€Sn 0ESy,0#id

v=— Z o(v).

0ESy,07#id

Then

nlv=Mn!-—1v+v=(n!-1)v-— Z o(v) = Z (v—0(v)),

oESh,0#id oESh,0#id

and v = & Z (v —o(v)). Therefore, ker(sym) C (v —o(v) |v € V¥ o €
0ESn,0#id
Sn), and ker(sym) = (v —o(v) |v € V¥ 0 € S,,). Hence,

Sym"V 2 Ve /(v —a(v) |v eV o e S,).

Sym™V; ® ... ® Sym™"V,, is the tensor product of Sym"V;,;1 < ¢ < n, as
previously defined as the image of the symmetrization map. This is equivalent

to defining Sym™V; ® ... ® Sym™"V,, to be the image of the map
syM®...Qsym: V"M ...V 5 VEM . .. @ Vom:

such that 1, ®...®v,, — Z 01(11)®...® Z on(vn) where o;(v;) is defined

o1 Esml On esmn

linearly by o;(a; ® ... ® ay,) = Ay=1(y) @ ... @ @y, This map is well-defined
by the universal property for tensor products since this map is linear in each of
the components V.¥™ by the linearity of the sym map. Then Sym™V; ® ... ®
Sym”"V,, is isomorphic to V™ ®...@ V2™ [ ker(sym®. ..®sym). The kernel of

sym®. . .®sym is equal to Z<v1®. - @(0—0i(1))®. .. @v, | v; € VE™ 05 € Sp,).

=1



Also, since (A1/B1 ® ... ® A,/B,) 2 (41 ® ... ® An)/(i/ll ®...A 1 ®

B;® Aij1 ®...® A,) using the isomorphism [a1] ® ... ® ECZLi] =l ® ... @ ay),

Sym™ Vi ®...® Sym™V, = (V™ /(v; — oy (v1) | v1 € V2™ 0y € Sml))? e ®

(VE™ [ (= 0n(vn) | vn € VE™ 0y € S, )) = (VE™ @ ... @ VE™) /(D (01 @
i=1

L@ (0= 0i(1) ® ... v, | v; € V™ i € Spi)).

n

Hence, Sym™V; @ ... ® Sym™V, & (V™" ®...® Vn®m”)/(z<v1 ®...®
i=1
(v; — 03(V3)) @ ... @y | v; € V;E™ 07 € Spy,)).

Proposition 2.1. Let Vi,...,V, be finite-dimensional representations of a Lie
algebra L. For some one-dimensional subspace U of V1 ® ... ® V,, generated by

the element «, for any m; > 1 define
¢:Sym™ 'V, ®...®Sym™ 'V, - Sym™V; ® ... ® Sym™V,

as multiplication by the element ao. Then ¢ 1s an injective, intertwining map.

Proof. Let V; be a finite-dimensional representation with basis {vgi), véi), . ,v,i?}.

Then U is the one-dimensional subspace of V} ® ... ® V,, generated by

Zvﬁl) ®...®7t(")
t

= Y abixex g e @)

(jl X~-~><jn)

for some constants a(j; X ... X j,) where (j; X ... X j,) runs over the set

{1, ki <o ox {1, o k)



Now, ¢ is the linear map such that

symel! ® ... ® 047(7271) ®.. . @sym"®...® 047(7271)

- Z a(y % ... x jo)sym(al) ® . @al)  @ul)®..

® sym(oz(ln) ®...Q aﬁ,’;{_l ® v(-n)).

In

Since U # 0, some a(j; X ... X j,) # 0. Without loss of generality, assume

agix..x1) 7 0. The linear map ¢ is well-defined because a permutation of the agj )

vectors in sym(agj ) ®...® aﬁjﬂl) yields the same element and equivalently the

same permutation of the aﬁj )

vectors in sym(al’ @ ... ® o, ® ) yields the

same element.
We will now show directly that ¢ is injective. For the given bases of V;, identify

the standard basis elements of Sym™ 'V, @ ... ®@ Sym™ 'V, as k1 X ... X ky

- tuples (", ... ,c,(cll)) xox (M) ,c,(;:)) or I, (", .. ,c;?) such that for a

particular basis element cg‘j ) is equal to the number of times vgj ) appears in that

basis element. The standard basis for Symm1 Wi®...®Sym™ 'V, is equivalent
to the set {11 1(c§”,... () ) e Z>0,Zc m;—1,1 <j <n}. Similarly,
identify the standard basis elements of Symmlvl ®...0Sym"™V, as k1 X ... xk,

- tuples H?zl(dgi), o ,d,g?) such that for a particular basis element dgj ) is equal

(9)

to the number of times v;”’ appears in that basis element. The standard basis

for Sym™ Vi ® ... ® Sym™"V,, is equivalent to the set {H?Zl(dgi), . ,d,(;i)) | dgj) €
k;

ZL>, Zd,gj) =m;j,1 < j <n}. Therefore any element, v, of Sym™ 'V, ®...®
i=1



Sym™" "V, has the form

v= Y b (e, e (e, e)
H?:1 (cgi) ,,,,, cg_))

7

for some constants b(H?Zl(cgi), . ,c,(fi))). Let v be an element of the kernel of ¢

with this form. Then ¢(v) = 0, and we will now show that every
(1, (7. ) = 0.

Thus proving ker ¢ = {0}.
Since H?Zl(dgi), . ,d,(g?) is a basis element of Sym™'V; ® ... ® Sym™"V,,, its

coefficent in ¢(v) is

ST ali xooox Ga)bImy (@, dY — 1, d)) = 0.
57 #0

Let S =71 +...+r,. We will now prove by induction on S that
b(I, (m; — 7y, cgi), . ,c,&?)) =0,

1 <r; < m,;. This covers all basis elements of Symml_lvl .. .®Symm"_1Vn since

every entry in the i-th component of a basis element is between 0 and m; — 1.
Consider the base case where r; = 1 for all 7 and then S = n. The only basis

element with r; = 1 for all 4 is I, (m; — 1,0,...,0). The coefficient of the basis

element I, (m;,0,...,0) in Sym™V; ® ... ® Sym™"V,, for ¢(v) is

a(1x ... x Db(I (m; — 1,0,...,0)) = 0.



Since a(l x ... x 1) £ 0, b(I1?_,(m; — 1,0,...,0)) = 0.
Assume b(I1", (m; — ri,cgi), . ,c,(g?)) =0forall S=r +...+7m, <s Now
let S = s+ 1. Consider any particular n-tuple (74, ..., r,) such that S = Z r; =

i=1
s+ 1. It is enough to show b(II"_, (m; — ry, &7, . .. ,c,(;l_))) = 0 for any basis vector

in Sym™ 'V, ®...®Sym™ 'V, of the form I, (m; —r;, cgi), . ,c,(ji)). Consider

the coefficient of I, (m; —r; + 1, cgi), e ,c,(:i)) in v, which is equal to 0.

a(1x ..o x Db(M(m; —ri e, q)))

+ Z a(j1 X ... X Jp)b(Il(m; — r; + 1,0, e =1, ,c,(j)))

c;-?yéo, not all j;=1

=0.

Inside the sum over cg»i) # 0, not all j; = 1, consider a particular coefficient

b(II(m; — (r; — 1), cg), . ,cg-j) —-1,... ,CZ))). Since not all j; are equal to 1, there

is some t such that j; # 1. This means that for this term, S < (Z ri)+r—1=
it
(Z ri)—1=(s+1)—1 = s, which satisfies the induction hypothesis. Therefore,
i=1
. (4) @ _ @Yy _ -
b(I(m; —ri +1,¢57,...,¢;) —1,...,¢.”)) = 0 when not all j; are equal to 1.

Therefore

> a( % X a)b@m =+ 1,6, — 1)) =0,

cgi)iﬂ, not all j;=1

and the only term left in the previous sum is
a(1x ... x D)b(I(m; — ry, ¢S ,c,(j))) =0.

10



Since a(1 x ... x 1) % 0, b(I(m; — rs, &, ... 701(4;?)) = 0, which proves the induc-
tive step.

To prove injectivity an alternate way, let Sym(V') be the algebra @ Sym®V.
Then Sym(V}) ®...®Sym(V,,) = Sym(V; +...+V},) is isomorphic tomtzlrloe algebra
of polynomials on (Vi* + ...+ V*) over F, which has no zero divisors. This
implies ¢ is injective because, in this setting, ¢ is equivalent to multiplying certain
homogeneous degree m; — 1+ ...+ m, — 1 polynomials by a fixed homogeneous
degree n polynomial.

The intertwining property of ¢ is easy to verify using the fact that o generates

a trivial representation in V; ® ... ® V,,. This concludes the proof. O
Corollary 2.2 follows directly from Proposition 2.1.

Corollary 2.2. Let Vi,...,V, be finite-dimensional representations of a Lie al-
gebra. If there exists a trivial representation contained in Vi ®...®V,, then there

exists an invariant subspace
Sym™ 'V ®...® Sym™ 'V, € Sym™V; ® ... ® Sym™V,, for all m; > 1.

For our purposes, we will now focus on V' ® V* for a finite-dimensional repre-
sentation V' of a Lie algebra. V' ® V* contains the trivial representation. Let V'
have the basis {vy, va, ..., v}, and let V* be the dual space with corresponding

k
dual basis {fi1, fo, ..., fr}. The trivial representation is generated by Z v; ® fi.

Using the given bases of V' and V*, we identify the standard basis eil:einents of

Sym"V ® Sym"™V* with pairs of k-tuples such that ¢; equals the number of times

v; appears in the basis element and d; equals the number of times f; appears in

11



the basis element. The standard basis for Sym"V ® Sym™V™* is then given by

=

{(cr,...,ex) X (dvy...,d)) | ¢; € Lo, dj € ZZO;Zk:Ci = n,Zdj =m}.
i=1 j=1
For n,m > 1, consider the linear map
p: Sym™ 'V @ Sym™'V* = Sym"V ® Sym™V*
with the property

sym(ag ® ... ® 1) @sym(f; @ ... Q Bn_1)
k
— Zsym(oq Q... Q01 V) @sym(f1 @ ... ® Bo1 ® fi).

=1

k
This is the map defined as multiplication by the element Z v; ® f;, which gener-
i=1
ates the trivial representation in V' ® V*. Proposition 2.1 shows p is an injective,
intertwining map.

The dual map to p (with n and m interchanged) is the linear map
p*: Sym™V @ Sym™V* — Sym™ 'V @ Sym™'V*
with the property

sym(a; ® ... ® ay) @sym(f1 ® ... ® Bn)

HZZBj(ai)sym(al®...®di®...®an)®sym(ﬁl®...®Bj®...®ﬁm).

i=1 j=1

p* is a surjective, intertwining map.

12



For V@ V*, Corollary 2.2 can be applied as follows. There exists an invariant

subspace

Sym" 'V ® Sym™ 'V* C Sym"V @ Sym™V* for all integers n,m > 1.

2.2 The case of sp(4,C)

We will apply the above result from Corollary 2.2 to representations of the Lie
algebra sp(4, C), where
1
sp(4,C)={Aegl(4,C)| AT+ JA =0} and J = { ! ] .
-1

Evidently, sp(4,C) is 10-dimensional and has the following basis,

cooo
—_

o

Q

=

+

Q

»
—
—ocoo
cocoo
cocoo
cooo
_

o<

=

+

Q

»
| — ]
oroo
—ocoo

In this basis, the simple roots are a; and as, the Cartan subalgebra is h =

(Hy, Hs), and for each root a,

% = span{X,, Yo, Hy = [Xa, Ya|} = 51(2,C).

Any weight (wq,wy) can be thought of as the pair of eigenvalues associated
to Hy and Hs, respectively, for the corresponding weight vector. The dominant
Weyl chamber is {(n,m) € Z X Z : n > m > 0}. Let V(n,m) be the irreducible
representation with highest weight (n,m), n > m.

The following displays the root system and the first few weights of the domi-

13



nant Weyl chamber.

a9 .
al+az
T2,

2&1:{-042

The Weyl dimension formula, tailored to our situation, appears in [6], Section

7.6.3. It states that

dim V(n, m) = é(n ot D(m A+ 1)+ 2)(n +m £ 3).

The following table displays V/(1,0), the standard representation of sp(4,C),
for this previously defined basis of sp(4,C) and the standard basis of C* and its
dual representation with corresponding basis {fi, fa, fs, f1}. These representa-
tions are isomorphic via f; — —ey, fo — —es, f3 — es, f1 +> e, but the different

formulas for both of them will be used in subsequent calculations.

14



e 2 es eq 1 f2 g Ja
H, el 0 0 —ey | —h 0 0 Ja
H, 0 € —es 0 0 —fo f3 0
Xay 0 el 0 —e3 | —fo 0 fa 0
Xomias| 0 L 0 | 0 | e | =il 0] 0| 0
Xostan 0 0 €1 ea | —f3 | —fa 0 0
Xa, 0 0 €9 0 0 —f3 0 0
Yoo | e | 0 | —ea|l 0 | 0 | =f| 0 | f
Yoursas | €s | O | 0 | 0 L 0o | 0o | 0 |-f
Yo, tas es3 €4 0 0 0 0 —f | —f
Y., 0 es3 0 0 0 0 —fo 0

The weights of V(1,0) are {(1,0),(0,1),(0,—1),(—1,0)}, and e; is a highest

weight vector.

It can be easily shown that V(n,0) = Sym"V (1,0). First, there is a highest
weight vector, sym(e; ®...®e;), in Sym"V (1, 0) with weight (n,0), and therefore
V(n,0) C Sym"V(1,0). Then using the Weyl dimension formula, V'(n,0) has the
same dimension as Sym"V'(1,0) and thus V(n,0) = Sym"V (1,0).

The weight diagram for V'(n,0) = Sym"V (1,0) is a series of nested diamonds

with leading weights (n — 2¢,0) and with multiplicities ¢ + 1 along the diamonds,

0 <7 < [§]. The following is the weight diagram for V'(4,0).

15




Proposition 2.3. For sp(4,C) and its standard representation V- =V (1,0),

Sym"V ® Sym™V = (Sym™ 'V ®@ Sym™ V) @ @ V(n+m—p,p)

p=0

for integers n > m > 1.

Proof. Given n > m and using the previously described basis, we define for all

integers p such that 0 < p < m the following vector in Sym"V ® Sym™V*,

P .
Up:Z (—1)Z(n—p+2,p—z,0,0)><(0,0,z,m—z)
i=0 \ ¢
P
p ,
= (—)'sym(e;® ... Qe ®ea® ... ®ey)
=0t n—‘;-i-i pti

®sym(f3®...®f§®f4®...®f%).

- -~
i m—i

This vector is in the kernel of the map p* defined in Section 2.1 because

(n—p+i,p—1,0,0) x (0,0,i,m—17)—0+...+40=0.

Also, this vector is a highest weight vector with weight

(n—p+14)(1,0) + (p—1)(0,1) +4(0,1) + (m —i)(1,0) = (n +m — p, p).

16



To see v, is a highest weight vector, it is enough to show that it is in the
kernel of X, for any «a.

First, the only relevant calculations are X,.e1, X,.e2, X,.f3, and X,.fs. These
will all be equal to zero except for a = a;. Therefore, we only need to show v,
is in the kernel of X,,. X,,.e1 = X4,.f1 =0, Xy,.€2 = €1, and X,,.fs = f4. By

definition,

Xoy-(n—=p+i,p—14,0,0) x (0,0,4,m — 1)

:Xal.sym(gl®...®e;®§2®...®eg)®sym(f3®...®f§®f4®...®fé).

Vv Vv
n—p+i p—i i m—i

This becomes

(mn—p+i)sym(Xy .10 ®..0e; Qe ®...R e3)
Rsym(fs®...Qfs®f1®...0 fa)
+(p—i)sym(e; ®... Qe @ Xy .e2Re® ... R e)
@sym(fs®... QO fs® f1®...® f1)
+ (i)sym(e1 ® ... Qe R ey ® ... R es)
Rsym(Xe, 5@ f3®...0 5@ f1®...® f1)
+(m—i)sym(e; ®...Q e Qe @ ... R es)

@sym(f3®... @ f3 0 Xo, . f1® fu®...® fa).

This is equal to (n—p+14)(0)+ (p—i)(n—p+i+1,p—i—1,0,0) x (0,0,4,m—
i)+ (i)(n —p+i,p—1,0,0) x (0,0, — 1,m —i+ 1) + (m —4)(0) (with the
understanding that when ¢ = p there is no second term and when ¢ = 0 there is

no third term here). From here X,,.v, = 0 is a straightforward calculation.

17



For each of the highest weight vectors, v,, with weight (n +m — p,p) and in
the kernel of p*, there is an irreducible representation V(n + m — p, p) contained

in the kernel. Since all of the weights {(n +m — p,p) : 0 < p < m}, are distinct,

GB V(n+m—p,p) C ker(p*).

p=0

It follows from semisimplicity and the surjectivity of p* that

(Sym" 'V @ Sym™'V*) & P V(n +m — p,p)

p=0
C (Sym™ 'V @ Sym™ 'V*) @ ker(p*)

= Sym"V ® Sym™V*

for n > m > 1. The Weyl dimension formula shows that this inclusion is actually
an equality. Note that V* can be replaced by V since this representation is

self-dual. O]

Note that all of the highest weight vectors in Sym™V ® Sym™V, V = V(1,0),
can be determined using the proof of Proposition 2.3, the map p from Section
2.1, and the isomorphism between the standard representation and its dual.

In [10], Littelmann provides a generalization of the Littlewood-Richardson
rule in the cases of all simple, simply connected algebraic groups of type A,,, B,
Chm, Dy, Go, Eg, and partial results for Fy, E7, and Eg. This generalization pro-
vides an algorithm for decomposing tensor products of irreducible representations

using Young tableaux and can be utilized to produce the result of Proposition

2.3.

18



Corollary 2.4. For integersn >m =1,

V(n,0)®V(1,0) = V(n+1,008 V(n,1) & V(n—1,0)

Forn>m > 2,

(V(n,0) ® V(m,0)) & (V(n,0) ® V(m —2,0))

=Vn+1,0)@V(m-10)edV(nm)®d (V(n—-10)V(im-—1,0))

Proof. Recall Sym"V (1,0) = V(n,0). The first assertion is the special case of

Proposition 2.3 where m = 1. Using Proposition 2.3, when n > m > 2,

V(n,0)@V(m,0) = (V(n—1,0)@V(m—1,0) &P V(n+m-pp)
p=0
and
m—1
V(n+1,0)®V(m—1,0) = (V(n,0) @ V(m —2,0)) & @ V(n+m—p,p).
p=0
Combining these equations yields the assertion. O]

In the Grothendieck group of all representations of sp(4, C), for V- = V(1,0),

we get
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V(n,0) = Sym"V n=>0
V(n,1) = Sym"V ® V — Sym" ™'V — Sym" 'V n>1
V(n,m) = Sym™V ® Sym™V + Sym"V ® Sym™ 2V n>m>2

— Sym™" 'V ® Sym™ 'V — Sym™" ™V ® Sym™ V.

This result can also be derived in a less elementary way from a proposition
in Section 24.2 in [5], which gives a formula for the character of an irreducible
representation of a simplectic Lie algebra in terms of the characters of symmetric

powers of the standard representation.

2.3 Weight multiplicities in V' (n,0) ® V(m,0)

Since any irreducible representation of sp(4, C) can be written as a formal combi-
nation of tensor products of symmetric powers of the standard representation, the
problem of determining weight multiplicities in an irreducible representation is
reduced to the problem of determining weight multiplicities in V'(n,0) ® V(m, 0).
We will now begin a combinatorics argument, which will produce an explicit
formula for the weight multiplicities of V' (n,0) ® V(m,0).

Using previous notation, the set

4 4
{(c1, 02, ¢3,¢4) X (d,dp, ds, da)|ci,dj € Zno, > i =m,» dj =m}
j=1

=1

is a basis of weight vectors for V' (n,0) ® V(m,0). The weight of (c1, o, 3, ¢4) X

(dy,ds,ds,dy) is ((c1 + dy) — (¢4 + da), (ca + d2) — (c3 + d3)). The only dominant
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weights of V' (n,0) ® V(m,0) with a nonzero multiplicity are of the form (n+m —

2i—j,j) for 0 <7 < [®5™ ] and 0 < j < [ 5| —i. To determine the multiplicity

of a dominant weight, we need only count the number of distinct vectors of the
form (c1, ¢, c3,¢4) X (dy,da, d3, dy) with that weight.

In other words, the multiplicity of the dominant weight (n + m — 2i — j,7)
is equal to the number of distinct vectors (¢, co, c3,¢4) X (dy, do, ds, dy) such that
(cr+dy)—(ca+dy) =n+m—2i—jand (co+ds) — (c3+d3) = j. Let z, = ¢, +d,.

Solving the system

T1—Tg=n+m—21—7

Ty — X3 =]
yields the solution set satisfying

rT1=n+m-—21—j+ x4
To=1+7 — a4

I‘3:’i—l’4

forzy €Z and 0 < 24 < 1.
For a fixed = x4, the number of distinct vectors (c1, co, ¢3, ¢4) X (dy, da, d3, dy)

such that (¢;+dy)—(catdys) = n+m—2i—j and (co+ds)—(c3+d3) = j is equivalent
4

to the number of distinct ways to find (dy, ds, d3,ds) such that Z d, = m and

r=1
0 <d, <z, for any r. Since x3 + x4 =1 and x1 + xo = n + m — i, we can fix an

integer k such that 0 < k < min(m, ), and the number of distinct ways to find

min(m,3)
(dy,ds, ds, dy) with the desired conditions is equivalent to Z flz, k) xg(x, k),

k=0
where f(x, k) is the number of distinct ways to find (dy, dy) such that d; + dy =
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m—k and 0 < d, <z, for r = 1,2 and where g(x, k) is the number of distinct
ways to find (ds,d4) such that ds + dy = k and 0 < d, < z, for r = 3,4. With

these definitions,

flz, k) =min(n+m—-2i—j+zx+1li+j—xz+1ln+k—i,m—Fk+1)

gx,k) =min(x + 1,i —x+ 1L, k+1,i —k+1).

The multiplicity of (n+m—2i—j,j) in V(n,0) ®V(m,0), for 0 < < | 257 |
and 0 < j < [ME2| —4, s

i min(m,i)

Mn+m—2i—j.5) =Y >  flzk) *glxk).

Theorem 2.5. The multiplicity of the dominant weight (n + m — 2i — j,7),
0<i<[™2] and 0 < j <[] — 14, in the representation V(n,0) ® V(m,0)
of sp(4,C) is given in the following table. The conditions on n,m,i, and j are in

the first two columns, and the third column is the corresponding multiplicity.
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n>2i+j, m>2i+j S+ 1) +2)(0+3)(i+ 25 +2)
i+j<m<2i4+j5  S>E+DE+2)(@+3)(i+25+2)
—R(B)
j<m<it+jm>i 5@+1)(E+2)(i+3)(2m—1i+2)
—R(v)
m < j,m>i L+ 1) +2)(i+3)2m—i+2)
j<m<itjm<io g5(m+1)(m+2)(m+3)(2 —m+2)
—R(7)
m < j,m < L(m+1)(m+2)(m+3)(2i —m +2)
n<2i+j i+j<m<2i+j H@E+1)6E+2)(i+3)(i+2j+2)
—R(a) — R(B)
j<m<it+jm>i 5@+1)(E+2)(i+3)(2m—i+2)
—R(a) = R(v)
jE<m<itjm<io gf5(m+1)(m+2)(m+3)(2 —m+2)

—R(a) — R(7)

In the table, « = 2i+j—n,0=2i4+j—m,y=m—7, and R(z) is defined as

L2(z+2)%(z +4) z even
R(z) = 48

=+ 1) (z+3)(z* +42+1) =z odd.
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Proof. This is a direct result of

i min(m,i)

M(n+m—=2i—j,5) =Y >  flxk)«glxk).

To use this definition to compute the multiplicity, consider

min(m,3)

M(n+m=2i—jj)= Y Sk

k=0

for S(k) = Z f(z,k)*g(x, k). The definitions of f and g then produce different
=0
cases. We will show one case as an example.

Forn >2i+j and m > 2i + j,

min(n+m-—-2i—j+zx+li+j—z+ln+k—im—k+1)=i+j—z+1,

and S(k) = Z(z +j—x+1)xg(x, k). To determine S(k), we wish to sum over

z=0

xr = 0,...,7 given a particular k. We will separately consider the cases when
k<3, k=35, and k> 3.
Assume k < % When = < k, g(k,x) = x + 1. When k < x < i — k,

glk,zr)=k+1. Whenx >i—k, g(k,z) =i —x+ 1.

S(k):Z(z’—i—j—x—i—l)(:c—l—1)+§:(i+j—x+1)(k—|—1)

=0 =k

+ i: (t+j—xz+1)(i—x+1)

—(i+j—k+1)k+1)—(i+j—(G—k) +1)(k+1)

_ %(l{;—i— 1) — k+1)(i +25 +2).
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Assume k = £. When z < k, g(k,z) = x+1. Whenz >k, g(k,z) =i—z+1.

k %

Sk)y=) (i+j—z+D)@+1)+> (i+j-a+1)(i—z+1)

=0 z=k

—(i+j—k+D(k+1)

:%%+n@—k+n@+m+ay

Finally, assume k > . When z <i—k, g(k,z) =x+1. Wheni—k <z <k,

gk,z)=i—k+1. Whenz >k, g(k,z) =i—z+ 1.

S(]{?):lZ(Z.—l-j—JZ—Fl)(JT—i—l)—F Z (t+j—z+1)(i—k+1)

+i(i+j—x+1)(i—x+1)

—(+j—(—-k+1)i—k+1)—(G+7j—k+1)E—-k+1)

= Sk D~ k+ 1425 +2)

Since S(k) = $(k+1)(i —k+1)(i +2j 4 2) for any k =0,... .1,

M(n+m—2i—j.j) =)
k=0
1

= G+ DE+2)(i+3)(i +2) +2).

(k+1)(i —k+1)(i + 25 +2)

DO | —
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Index the conditions on n, m, i, and 7 as follows.

n>2%+j m>2i+] D,
i+j<m<2i+j Dy
J<m<i+jm=>i Ds
m<j,m>1 D,
J<m<i+jm<i Ds
m<gm <1 Dy
n<2i+j5 1+7<m< 214 D-
j<m<i+g3m>1 Dg
J<m<i+j,m <0 Dy
These conditions on the dominant weights of V'(n,0)®@V (m, 0) create separate

sections D;. There are three main cases of this. The following diagrams display

these cases. In the first case, n < 2m.

(m,m (n,m)
D3
Ds
Do D1
(nfm n—m
2 2 D7

D
’ (n-m.0) _ |(m.0) (n.0) (n+m,0)

In the second case, 2m < n < 3m.
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Dy

(m,m (n,m)
(n5m7n;nl Ds Dy
D> D1
Dg
Ds
- 4\ (m,0) (n—m.0) (n,0) (n+m,0)
In the third case, n > 3m.
D
(ngm’ngm) 4
(mamy_ " (n.m)
D3
Dg Ds
Do D1
(m.,0) (n—m.0) (n.,0) (n+m,0)

for any section sharing that line as an edge.

In the boundary cases, such as when m = 0, n = m, n = 2m, or n = 3m, there

27

The multiplicity of a weight lying on a line can be calculated using the formula

will be fewer sections, but the sectioning of the triangle of dominant weights can
still be derived from the main cases. For example, when m = 0 the triangle of

dominant weights will only contain Dg, and when n = m the triangle of dominant



weights will be split down the middle into the sections D; and D;.

2.4 Weight multiplicities in V(n,m)

Using the results of Section 3 and Section 4, the multiplicities of the weights in
the representation V(n,m) can be determined. Let M(n +m — 2i — j,5)(V) be
the multiplicity of the dominant weight (n +m — 2i — j,j), 0 <@ < [2£2] and
0<5< L"J“ij — 4, in the representation V. The results of Corollary 2.4 can be
applied to weight multiplicities. The multiplicity of the weight (n+m —2i—j, j)
for m = 0, m = 1, and m > 2 can be found from the following identities,
keeping in mind that (n +m —2i — j,7) = (n+ 1)+ (m —1) — 2i — j,j) =
(m+(m—-2)—2i—1)—4,j)=((n—1)+(m—1)—2(: — 1) — j,j) and when

i=0,any M(n'+m' —2(i—1) — 7,7)(V(n/,0) @ V(m’,0)) = 0.
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M(n —2i—j,5)(V(n,0))
= M(n—2i— j,5)(V(n,0) ® V(0,0))
M(n+1-2i—75,7)(V(n,1))
= M(n+1-2i—7,7)(V(n,0) @ V(1,0))
— M(n+1-2i—34,7)(V(n+1,0)®V(0,0))
~Mn—-1-2(i—-1)+775)(V(n—1,0)®V(0,0))
M(n+m —2i—j,j)(V(n,m))
=Mn+m-—2i—737)(V(n,0)®V(m,0))
+Mn+m—2-2(i-1)—4,7)(V(n,0) @ V(m—20))
—Mn+m—-2-2i—-1)—4,7)(V(in—1,0) @ V(m —1,0))

—Mn+m—2i—77)(V(n+1,0) @ V(m —1,0)).

Combining these results with Theorem 2.5 gives a closed formula for the

weight multiplicities of the dominant weights of V(n, m).

Theorem 2.6. The multiplicity of the dominant weight (n + m — 2i — j,7),
0<i<[™M™] and 0 < j < |22 — i, in the representation V(n,m) of sp(4,C)
is giwen in the following table. The conditions on n,m,i, and j are in the first

two columns, and the third column s the corresponding multiplicity.

29



n>2+j5 m>21+) 0

n>2i+j m=2+] 1
1+ 5<m< 21+ P(ﬁ)
j<m<i+jm>i i

N[ =

m<jm=>1

j<m<i+jm<i

N

(+1)(E+2)—Qy)
(i +1)(i +2)

(2 —m+2)(m+1)—Q(v)

m < j,m < i $(2i —m+2)(m+1)
n<2+j it+j<m<2i+j PB)—Qa)
j<m<itjm>i 5(i+1)(i+2) - Qa) —Q(v)

j<m<i+jim<i

N

(2t =m+2)(m+1) - Qo) — Q(7)

In the table, « =2i+j—n,8=2i+j—m,y=m—j, P(z) and Q(z) are

defined as

1(z+2)? z even
Piz)=4{"
\ H(z+1)(z+3) =z odd
(
12(z+2) z even
1
Q(z) =
1(z+1)?  z odd.

The multiplicities of all other weights can be determined through reflections.

It is also easy enough to check that these multiplicities coincide with the multi-
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plicity formula found at the end of [3].
This picture is of the multiplicities of the dominant weights (n+m —2i — j, )
in V(7,3).

The following are a few examples of the calculations required to determine the

multiplicities of these weights using Theorem 2.6.

The weight (8,2) = (10 —2(0) — 2,2), wherei =0 and j =2. Thenn=7>2 =
2i+j and m = 3 > 2 = 2i + j. Therefore M (8,2) = 0.

The weight (6,0) = (10 —2(2) — 0,0), where i =2 and j =0. Thenn =7 >4 =
2i+jand 2=i4+j<m=3<2i+)=4. Here, =2i+)j—m=4-3=1.

Therefore M (6,0) = 2(1+1)(3+1) = 2.

T4

The weight (3,1) = (10—2(3)—1,1), where i = 3 and j = 1. Thenn =7 = 2i+7,
l=7<m=3<i+j=4andm=1i=3. Here,y=m—-—j=3—-1=2
Therefore M(3,1) =1(3+1)(3+2) — 1(2)(2+2) =8.

The weight (0,0) = (10 — 2(5) — 0,0), where ¢ = 5 and j = 0. Then n =
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7T<10=21+7,0=7<m=3<1+7 =25 and m < i = 5. Here,
a=2i+j—n=3andy =m—j =3—0 = 3. Therefore M(0,0) =
1(2x5-3+2)(3+1) - 1(3+1)2—1(3+1)? =10.
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Chapter 3

L- and e-factors for Sp(4)

3.1 The real Weil group

As in [15], the real Weil group is Wg = C*UjC* such that j> = —1 and jz5 ! = 2.
The L- and e- factors for Sp(4) are calculated for a particular representation of
the real Weil group Wg, fio( : Wg — GL(V), where { : Wg — Sp(4) is a fixed
representation of Wx and [ is a representation of Sp(4), 1 : Sp(4) — GL(V).
The fixed representation of the real Weil group, ¢ : Wg — Sp(4), is defined such
that

ik0

ilo
re —
o—ilo

e—ik@

33



and

—1

where [ and k are both odd integers, so that j?2 = -1+ —1 = J2.

In [8], the representation theory of Wx includes the following facts. Every
finite-dimensional representation of Wy is completely reducible, and every ir-
reducible representation is either one- or two-dimensional. Furthermore, every
one-dimensional representation is of the form ¢, ; or ¢_,

|2t

Gipiz 27— 1

or

¢+,t LR |Z|2t7j = —1,

and every two-dimensional representation is of the form ¢, for some integer p,

7’2t6ip0 (_1)])

Opit re — ]

7,2t6—ip6 1

Note that ¢, = ¢_,; and when p = 0, ¢,,; decomposes into ¢, ;D p_ ;. Since W
has the complete reducibility property, any representation of Wg can be written
as ¢ = @¢; for some irreducible representations ¢;, and L(s,¢) = II;L(s, ¢;)
and &(s, ¢) = Il;e(s, ¢;). Therefore we only need to know L(s, ¢) and (s, ¢) for

irreducible representation ¢, and then we can calculate the L- and e-factors for
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any representation. The following table displays these factors for the irreducible

representations of Wg.

o3 Ir(s+1t) 1
6—r Tr(s+t+1) i
bpe Te(s+t+p/2) ittt

In this table, I'g = 7~%/2I'(£) and I'c = 2(27)*I'(s). Also, Legendre’s formula

"(G)r () -2

produces the following equality,

Ir(s)I'r(s+1) =Te(s).

This means that the L- and e-factors of ¢y, = ¢4, ® ¢_; can be calculated using
the definitions for ¢, ; and setting p = 0 because these definitions are equivalent
to L(s,¢4.¢)L(s,¢— ;) and (s, ¢4 1)e(s, ¢— 1), respectively, when p = 0. Also, for
our purposes given our definiton of (, ¢ will always be equal to zero. Therefore,
we will omit this parameter from now on.

The question of calculating L- and e-factors for a representation becomes a
question of what is the decomposition of that representation into one- and two-

dimensional representations of Wg.
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3.2 Archimedean factors of Sp(4)

Since Sp(4) has the complete reducibility property, any representation of Sp(4),
i1 = ®f; for irreducible representations fi;. Then for the representation of Wy,
fio¢ : Wg — GL(V), where ¢ : Wg — Sp(4) is a fixed representation of Wg,
ol = @(f1; 0¢). The L- and e-factors corresponding to this representation
of Sp(4) and the fixed representation of Wx will be the product of the L- and
e-factors corresponding to the ji; o (. Therefore, we only need to determine the
L- and e-factors of the fi o ¢ for the irreducible representations fi of Sp(4) to be
able to calculate the factors for any representation of Sp(4).

Any representation i : Sp(4) — GL(V) is in one-to-one correspondence with
w:sp(4,C) — gl(V) via the exponential map, gl(n,C) — GL(n,C). We can
apply the results of Section 2.2 to Sp(4) and interpret them in terms of L- and

e- factors. From Corollary 2.4,

V(n,0) = Sym"V n>0
V(n,1) = Sym"V ® V — Sym""'V — Sym" 'V n>1
V(n,m) = Sym"V ® Sym™V + Sym"V ® Sym™ 2V n>m>2

— Sym" 'V ® Sym™ 'V — Sym™" MV ® Sym™ V.

Now, let L(s,V') be L-factor of the representation po ¢ : Wg — GL(V) for
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the representation V' of Sp(4),

L(s,V(n,0)® V(1,0))
L(s,V(n+1,0))L(s,V(n—1,0))

L(s,V(n,1)) =

forn > 1,

L(s,V(n,0) @ V(m,0))L(s,V(n,0) @ V(m — 2,0))
L Vin—1,00® V(m—1,0))L(s,V(n+1,0) @ V(m — 1,0))

L(s,V(n,m)) =

forn >m > 2.

Let &(s,V) be e-factor of the representation po ¢ : Wg — GL(V) for the

representation V' of Sp(4),

e(s,V(n,0) @ V(1,0))
(s,V(n+1,0))e(s,V(n—1,0))

e(s,V(n,1)) = .

forn > 1,

£(s,V(n,0) ® V(m,0))e(s,V(n,0)® V(m —2,0))
(s,V(n—1,00@V(m—1,0))e(s,V(n+1,0) @ V(m — 1,0))

e(s,V(n,m)) = .

forn > m > 2.

To determine the L- and e-factors corresponding to Sp(4), it is enough to
determine the archimedean factors of the representations V'(n,0) ® V(m,0).
For p1: sp(4,C) — gl(V), let v € W(ap) be the weight space with weight (a,b).

Then

i Jo ="y,
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1
1
and the interesting question is what does fi( Jv equal? Consider
—1
—1
the following calculation. ) )
T 1
X Y X 1
i )i Jv
! -1
! -1
1 r!
A 1 A y_l
= fi )i Jv
-1 x
1
. 1
= "y v
—1
—1
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This shows that fi( € Wigp. If (a,0) # (0,0), each v €

—1

Wiap) pairs with Juv € Wi_a,—v) to generate a two-dimensional representation,

Gakbi, contained in the representation of Wg, po (. If (a,b) = (0,0), each v €
W(0,0) generates a one-dimensional representation contained in the representation
po( because the only irreducible representations of the real Weil group where re®
acts trivially on v are the one-dimensional representations. These calculations are
true for weight spaces in any representation.

Now consider V(n,0) ® V(m,0) = Sym"V @ Sym™V for V' the standard rep-
resentation. Let m be the standard representation for sp(4,C) and let I be the

representation guaranteed for Sp(4) such that the following diagram is commu-

tative, where exp is the normal exponential mapping of matrices.

sp(e) —e qru, o)

exp[ lexp

sp(4,C) —— gl(4,C)
Here, I(exp(X)) = exp(m(X)) for any X € sp(4,C). Since 7(X) = X for the
standard representation, II(exp(X)) = exp(X). This means II will also have the

standard representation. Consequently, the representation

psp(4,C) — gl(Sym”™V @ Sym™V)
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will correspond to the representation of Sp(4),

i Sp(4) — GL(Sym"V ® Sym™V)

such that

fa(A)(sym(og @ ... @ a,) @sym(f1 @ ... @ b))

=sym(Aa; ®...® Aa,) @ sym(Af ® ... @ AB)

where Av is just matrix multiplication.

Using previous notation, any standard basis element of V(n,0) ® V(m,0) can
be written as some pure tensor of standard basis elements of C* in the form of
sym(a) @ sym(B) = (¢1, co, c3,¢4) X (dy, ds, ds3, ds), where ¢; equals the number of

times e; appears in o and d; equals the number of times e; appears in f3.

J61 = —€4
J€2 = —€3
J€3 = €2
J€4 = €1

Therefore, J applied to (cy, co, c3,¢4) X (dy, da, d3, dy) equals

(_1)61+C2+d1+d2 (047 C3, Co, Cl) X (d47 d3a d?a dl)

Assume (c1, ¢2, €3, ¢q) X (dy, dy, d3, dy) € Wig). Equating the weight of the vector

(Cl, Co, C3, C4) X (dl, d27 dg, d4) with (0, 0) y1€ldS the equations c1+ d1 — (64 + d4) =
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02+d2—(03+d3):0, SO

(_1)61+62+d1+d2 (647 C3, C2, Cl) X (d4a d37 d?a dl)

equals

(_1)63+d3+04+d4 (047 3, Co, Cl) X (d47 d37 d27 dl)

The weight (0,0) = (n +m — 2i — j,5) for i = 5™ and j = 0. Since

n+m
2

is an integer, n and m must have the same parity. For any (c1, s, ¢3,¢4) X
(di,dy,d3,ds) € Wingm—2i—jj), c3 + d3 + ¢4 + dy = i as noted in Section 2.3.

Therefore, if (C1,02,03,04) X (d17d27d37d4) S W((),O), cs + d3 +cy+ d4 =7 = ”+Tm7

and me is even if n and m are both even, and "*Tm is odd if n and m are both

odd.
If
(01,02,03,04) X (dlaandBad4) = (clac27627cl) X (dlad27d27dl)>

(c1,C2,¢2,¢1) X (dy,dy,dy, dy) generates the representation ¢, when 5™ is even,

and it generates the representation ¢_ when ™5™ is odd. But for this vector,

2¢1 + 2¢o = n and 2d; + 2dy = m, which only happens when n and m are both

even. The number of possible vectors, (ci,ca,c2,c¢1) X (dy,dy,da,dy), is equal

to the number of ways to write ¢; + co = 5 such that 0 < ¢, < 7 multiplied

by the number of ways to write di + dy = 5 such that 0 < d, < . This

n m

number is (5 + 1)(%§ 4 1). Therefore when n and m are both even, the vectors

(c1, ¢, Ca,¢1) X (dy,da, da, dy) of W) generate (5 +1)(% + 1) copies of ¢, when

nEm s even and (5 +1)(% + 1) copies of ¢_ when 5™ is odd.
It

(017027637C4> X (d17d27d37d4) # (017C27C27CI) X <d17d27d27d1>7
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the representation

< (01702703704) X (dldead3ad4) + (04703702761) X (d47d3ad2ad1) >

+ < (01702a03vc4) X (dlaand3ad4) - <C47C3a027cl) X (d4ad37d27d1) >

equals the representation ¢, @ ¢_.

For the weight (0,0) with i = ™™ and j = 0, n < 2i+j =n+m, 0 =

n+m

j<m<i+j="" andm <i=

5 . Using Theorem 2.5, the multiplicity

of (0,0) is 55(m + 1)(m + 2)(m + 3)(n + 2) — 5ym(m + 2)?(m + 4) if m is even
and 55 (m +1)(m + 2)(m + 3)(n 4+ 2) — 53 (m + 1)(m + 3)(m? +4m + 1) if m is
odd. Therefore, if n and m are even, the decomposition of the representation of
Wr to V(n,0) ® V(m,0) contains (2 4+ 1)(2 + 1)¢s & 3(55(m + 1)(m + 2)(m +
3)(n+2) —sym(m+2)2(m+4) — (2+1)(2 +1)) (¢4 ®¢d-) when n+m =0 (4)
and (2 4+ 1)(Z 4+ 1)¢_ @ 2(5(m + 1)(m + 2)(m + 3)(n + 2) — 5ym(m + 2)%(m +
4) = (3 +1)(%2 4+ 1)) (¢4 @ ¢—) when n+m = 2 (4), and if n and m are odd,
the decomposition of the representation of Wg to V(n,0) ® V(m,0) contains
3(H(m 4+ 1)(m+2)(m +3)(n +2) — g5(m+ 1) (m +3)(m* + 4m + 1)) (61 © 6 ).

Let M(n+m —2i — j,j) be the multiplicity of the weight (n+m — 2i — j, j),

0<i< ™M™ and0<j < [22] —4, in V(n,0)® V(m,0). The decomposition

of fio¢ for f1: Sp(4) = GL(V(n,0) ® V(m,0)) is as follows.

42



V(n,0) ® V(m,0)

- @ M(n+m —2i—j, j)¢(n+m72ifj)k+ﬂ

0<j<tm —j

+ @ M(n+m — 20 — j, §)®ntm—2i—j)k—ji

0<j< ™™ —i

+ @ M(n+m — 20 — j,7)Omrm—2i—j)i+ik

0<j< Bt —4

+ @ M(TL +m—2i—j, j)¢(n+m—2i—j)l—jk
0<j< ™™ —i

+ EB M(n +m — 2i, 0)¢(n+m—2i)k

+ @ M(n+m — 2i,0)mrm—2y
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0 n#m (2)

@Z<n+m M( i, n—;m — 2)¢(n+m —i)(k+1) n=m=0 (2),
+@z’<"+7m M(n;m

+(5 + (5 + 1oy

B = ) Qsm ey m+m=0(4)

+(ggm(m +2)(m +4)(2n —m +2)(¢4 @ ¢-)
@K”Tm M(n—;m B

+ ®z<"+m (ngm - 7:7 MTm - Z)gb(""'Tm—z)(k—l) n+m=2 (4)

n+m
2

)gb(ner ’L)(k-‘r-l) n=m= O (2),

+(5+D)(F+1)o-

+(ggm(m +2)(m +4)(2n —m +2)(¢4 & ¢-)

@i<# M(n—;m — 7;, n—;m — Z)Cb(ner l)(k+l) n=m= (2)

+ @i M(HFR — i, 552 — i) P(nim 1)
+(&(m~+1)(m+2)(m+3)(2n —m +2)

+L(m A+ 1) (m +3)) (¢4 © o)

Note that in this decomposition, ¢.r1, may be equal to ¢g = ¢ B ¢_ for
ak + bl = 0. Using the multiplicities from Theorem 2.5 along with the earlier
results of this section and the table of L- and e-factors in Section 3.1, this de-

composition provides the framework for calculating the archimedean factors of

any representation of Sp(4).

We can also write the decomposition of a particular irreducible representation
V(n,m) into ¢,, ¢+, and ¢_. Using earlier calculations, the decomposition comes

down to pairing weight spaces W (a, b) and W (—a, —b) for (a,b) # (0,0) into two-
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dimensional representations of Wg and then separately considering W (0, 0) which
will decompose into one-dimensional representations of Wg.

Once again, we will use Corollary 2.4,

V(n,0) = V(n,0)® V(0,0)
n >0,
V(n,1)=V([n,0)®V(1,0) - V(n+1,0)®V(0,0) — V(n—1,0) & V(0,0)
n>1,
V(n,m)=V(n,0)®V(m,0) +V(n,0)®V(m—2,0)
—Vin-1,00@V(m-1,00—V(n+1,0)® V(m—1,0)

n>m> 2.

The decomposition of W(0,0) in V(n,m) can now be calculated using these
results and the explicit description of the decomposition of W (0,0) in V(n,0) ®
V(m,0) as it appears above.

Let M(n+m —2i — j,j) be the multiplicity of the weight (n+m — 2i — j, j),
0<i<[™M2]and0<j < [22] —4, in V(n,m). The decomposition of ji o ¢

for fi : Sp(4) — GL(V (n,m)) is as follows.
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V(n,m)

- @ M(n+m —2i—j, j)¢(n+m72ifj)k+ﬂ

0<j<tm —j

+ @ M(n+m — 20 — j, §)®ntm—2i—j)k—ji

0<j< ™™ —i

+ @ M(n+m — 20 — j,7)Omrm—2i—j)i+ik

0<j< Bt —4

+ @ M(TL +m—2i—j, j)¢(n+m—2i—j)l—jk
0<j< ™™ —i

+ EB M(n +m — 2i, 0)¢(n+m—2i)k

+ @ M(n+m — 2i,0)mrm—2y
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+ 9

0

Dicntm MG — 1, 5% = 1) dmpm iy op

+Djcngm M(H5" — i, 55 — 1) d(nem 4y

+3(m+2)(n—m+2)¢,

+im(n —m)o_

®i<"+Tm M(ngm =1, MTm - Z.)Qb("*Tmfi)(kJrl)
+ Dicagm MGH — i, 55 — )G agm )
+%m( —m)oy

+Hm+2)(n—m+2)¢

Dicntm MG — i, 5% — 1) dugm gy ey

+ Dy cngm MG — 1, 55" — D)@ (nsm

+i(m+1)(n —m)oy
+1(m+1)(n—m+2)¢_
Dicnsm M55 =1, 55 — i) P(ntm 14

+@icmem M55 — 0, 55 — i) gm0

+3(m+1)(n—m+2)p4

=

+h(m+ 1)(n — m)é_

N

47

n=m=0 (2),
n+m=0 (4)
n=m=0 (2),
n+m=2(4)
n+m=0 (4)
n=m=1(2),
n+m=2(4)



Chapter 4

Rank m symplectic Lie algebras

4.1 The case of sp(2m,C)

We will generalize the results of Chapter 1 for sp(4, C) to representations of the

Lie algebra
sp(2m,C) = {A € gl(2m,C) | A'J + JA =0}.

Here J = [J}m Jg‘} and J,, is defined to be the m x m anti-diagonal matrix with
ones along the anti-diagonal. Evidently, sp(2m, C) is (2m? 4 m)-dimensional and

has the following basis,

{Hi} = {erx — eomy1-komi1-klk =1,...,m},
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{Xa} = {ei — comi1—jomir-il
(1) = (1,2), - (Lom), (2,3)s s (2om), o (m— 1,m))

U {eiomt1-j + €jomt1-il
(1,7) = (1,2),...,(1,m),(2,3),...,(2,m),...,(m—1,m)}

U {ei72m+1—i|i = 1, e ,m},

and

{Ya} = {Ya = Xéz}

In this basis, the Cartan subalgebra is h = (Hy, ..., H,,), and for each root

% = span{X,, Yo, Hy = [Xa, Ya|} = 51(2,C).

Any weight (x1, 2, ..., x,) can be thought of as the eigenvalues associated to
H, through H,,, respectively, for the corresponding weight vector. The weights
in the dominant Weyl chamber are {(z1,...,2,) € Z™ : 21 > x5 > ... >
T > 0}, Let V(xq,...,2,) be the irreducible representation with highest weight
(T1, ..oy Tn)-

The Weyl dimension formula, tailored to our situation, appears in [6], Section

7.6.3. It states that

[T wt(Xa) - ((@1s- - 2) + wi(5))

dimV(xy,...,z,) = >0
( ) [ wt(Xa) - wt(5)

a>0

where wt(X,) is the weight of X, in the adjoint representation, - is the normal

dot product, ¢ is half of the sum of the positive roots, and wt(d) is the weight of
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0 in the adjoint representation.

The standard representation of sp(2m, C) is V(1,0,...,0). It has the standard
basis {e1, ..., ey} and is isomporphic to its dual representation with correspond-
ing basis {f1,..., fam}. These representations are isomorphic via f; — g1
form+1 < i < 2m and f; = —egmq1—; for 1 < j < m. The weights of

V(1,0,...,0) are

and e; is a highest weight vector.

It can be easily shown that V(n,0,...,0) = Sym"V(1,0,...,0). First, there
is a highest weight vector, sym(e; ® ... ® e1), in Sym"V (1,0, ...,0) with weight
(n,0,...,0), and therefore V(n,0,...,0) C Sym"V (1,0,...,0). Then using the
Weyl dimension formula from above, V(n,0,...,0) has the same dimension as
Sym"V(1,0,...,0) and thus V(n,0,...,0) = Sym"V(1,0,...,0).

Proposition 4.1. For sp(2m,C) and V =V (1,0,...,0), the standard represen-
tation,
Yy

Sym”V ® Sym?V = (Sym® 'V ® Sym?"'V) @ @ V(zr+y—p,p,0,...,0)

p=0

for integers x >y > 1.

Proof. Given x > y and using the previously described basis, we define for all
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integers p such that 0 < p <y the following vector in Sym*V ® Sym?V*,

P p .
= (=1)(z—p+i,p—1i,0,...,0) x (0,...,0,i,y — i)
=0 7
PP ,
— (=D)'sym(e1 ®...®e;®e ® ... ® ey)
=0\ q r—pti pi

® Sym(\mefl K...Q® f2m71/® fom ® ... ® f2n3)

~~ '

% y—1

This vector is in the kernel of the map p* defined in Section 2.1 because

(x—p+i,p—1,0,...,0) x(0,...,0,4,y —i) = 0+...+0=0.

Also, this vector is a highest weight vector with weight

(x —p+1i)(1,0,...,0)+ (p—1)(0,1,0,...,0)

+1(0,1,0,...,0) + (y —4)(1,0,...,0) = (x +y — p,p,0,...,0).

To see v, is a highest weight vector, it is enough to show that it is in the kernel
of X, for any a.

First, the only relevant calculations are X,.e1, Xq.€2, Xo.fom, and X, . fo_1.
These will all be equal to zero except when X, = e12 — egym—1,2m,. Therefore, we

only need to show v, is in the kernel of X, = €12 — €212, Call this root Xjs.
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X12.61 = Xlg.fgm = O, X12.62 = €1, and Xlg.fgm_l = f2m- By deﬁnition,

Xy (x—p+i,p—1,0,...,0) x (0,...,0,4,y — 1)

:Xlg.sym(gl®...®el®§2®...®e%)

~~

~
r—p+i p—1

® Sym(\me,l ® C.e ® f2m711® f2m ® e ® fz@)

-~ -~

7 y—1

This becomes

(r—p+i)sym(Xpe®e®...Q0e Qe ® ... R es)

@ sym(fom—1@ ... @ fan-1® fom @ ... @ fom)
+(p—i)sym(e; ®...®e; @ Xppeg @ey @ ... @ ey)

@ sym(fam-1® ... @ fom-1® fom @ ... ® fom)
+ (I)sym(e1 ® ... Qe e ® ... R ey)

@ sym(Xi2. fom—1® fom-1® ... @ fom-1® fom @ ... @ fom)
+(y—i)sym(e1 ®... Qe Qe ® ... R ey)

@ sym(fom—1® ... @ fom—1 @ Xi2.fom & form @ ... @ fom).

This is equal to (z —p+4)(0) + (p—i)(z —p+i+1,p—i—1,0,...,0) X
0,...,0,4,y—0)+ (i) (x—p+i,p—1i,0,...,0)x(0,...,0,i—1,y—i+1)+(y—1i)(0)
(with the understanding that when i = p there is no second term and when
i = 0 there is no third term here). From here Xj5.v, = 0 is a straightforward
calculation.

For each of these highest weight vectors, v,, with weight (z+y —p,p,0...,0)

and in ker(p*), there is an irreducible representation V(z +y — p,p,0,...,0) con-
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tained in the kernel. Since all of the weights {(z +vy —p,p,0...,0): 0 <p <y},

are distinct, @’_, V(z +y —p,p,0,...,0) C ker(p").

It follows from semisimplicity and the surjectivity of p* that

)
(Sym™ 'V @ Sym* 'V ) & PV (z +y — p,p,0,...,0)

p=0

C (Sym” 'V ® SymY"'V*) @ ker(p*)

= Sym®“V ® Sym?V*

for x > y > 1. The Weyl dimension formula shows that this inclusion is actually
an equality. Note that V* can be replaced by V since this representation is

self-dual. O]

Note that all of the highest weight vectors in Sym*V ® Sym?V, for V =
V(1,0,...,0), can be determined using the proof of Proposition 4.1, the map p
from Section 2.1, and the isomorphism between the standard representation and

its dual.

Corollary 4.2. For integers x >y = 1,

V(z,0,...,0)® V(1,0,...,0)

=V(z+10,...,00®V(z,1,0,...,0) ® V(x — 1,0,...,0).
Forx >y >2,

(V(z,0,...,00) @ V(y,0,...,0)) & (V(2,0,...,0) @ V(y — 2,0,...,0))
=V(x+10,...,0®V(y—1,0,...,0)) ® V(x,y,0,...,0)

®(V(z—1,0,...,00@ V(y —1,0,...,0)).
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Proof. Recall Sym"V (1,0,...,0) =V (n,0,...,0). The first assertion is the spe-

cial case of Proposition 4.1 where y = 1. Using Proposition 4.1, when x > y > 2,

V(z,0,...,0)® V(y,0,...,0)

=(V(z—=1,0,...,00@V(y—1,0,...,0) e P V(z +y —p.p.0,...,0)
and

V(z+1,0,...,00 @ V(y — 1,0,...,0)

y—1
= (V(2,0,...,0)@ V(y —2,0,...,0)) e P V(z +y —p,p.0,....0).

p=0
Combining these equations yields the assertion. O]

In the Grothendieck group of all representations of sp(2m,C), setting V' =
V(1,0,...,0), we get

V(z,0,...,0) = Sym"V x>0
V(z,1,0,...,0) = Sym"V ® V — Sym* ™'V — Sym* 'V x>1
V(x,y,0,...,0) = Sym”V ® Sym?V + Sym“V ® Sym? *V >y > 2

— Sym™™ 'V ® Sym?" 'V — Sym*™ ™V ® Sym?"'V.

4.2 The Littlewood-Richardson rule for Sp(2m)

This idea of using the standard representation as a building block for determin-
ing every irreducible representation can then be expanded to more complicated

highest weights, but more machinery is needed. In [10], Littelmann provides a
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generalization of the Littlewood-Richardson rule in the cases of all simple, simply
connected algebraic groups of type A,., B, Cn, Dy, Go, Eg, and partial results

for Fy, E7, and Fg. The main result from [10] is the following theorem.

Theorem 4.3. The decomposition of the tensor product Vy ® V), into irreducible

G-modules s given by

WV, = @ Vio(T)
T

where T runs over all G-standard Young tableaux of shape p(u) that are A-

dominant.

Let G = Sp(2m). We will now give a description, tailored to our situation,
of the Sp(2m)-standard Young tableaux of shape p(u) that are \-dominant. We
will only need to consider the case where p = (n,0,...,0).

The Sp(2m)-standard Young tableaux of shape p(n,0,...,0) are all of the
Young diagrams consisting of a single nondecreasing column of length n contain-
ing the integers 1 to 2m.

Define v(T) := (cr(1) — er(2m))er + (er(2) —er(2m —1))ea + ... + (er(m) —
cr(m 4+ 1))€n, where crp(i) is equal to the number of times the number i appears
in the tableau T.

Let T(l) be the tableau created from T by removing rows [ + 1 to n, count-
ing from bottom to top. Then an Sp(2m)-standard Young tableau T of shape
p(n,0,...,0) is A-dominant if all of the weights A+ v(T(l)) are dominant weights
for1 <l <n.

We can now present the main theorem of this note.

Theorem 4.4. Any irreducible representation of sp(4,C), V(z1,...,zx,0,...,0),
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can be written as an integral combination in the form

n

> eV, 0,....00®...@V(y,0,...,0) (4.1)

i=1
) d (@)
for some n, ¢;, and y;".

Note that V(n,0,...,0) = Sym"V(1,0,...,0), and the tensor products in the
formal sum are products of varying symmetric powers of the standard represen-

tation.

Proof. We will use induction on k. The case where k = 1 is trivial, and the case
where k = 2 is a consequence of Corollary 4.2.

Assume the statement of the theorem is true for k. Now, we will want to
show V' (21, ..., 2, k11,0, ..,0) can be written as some integral combination in
the form ZciV(ygi), 0,...,0)®...® V(y,(i)rl, 0,...,0) for some n, ¢;, and yj(-i).
We will prigxlfe this assertion by induction on the size of x;.

When z1 =0, V(z1, ..., 25, 2511,0,...,0) can be written as some integral
combination in the form Z ciV(yY), 0,...,0)®.. .®V(y,(i)rl, 0,...,0), with y,(;)rl —
0 for every ¢, using the iélzdluctive hypothesis for the induction on k.

Assume true for zx11 < z—1. Now we want to show V(zy,..., 2k, 2,0,...,0),
for any x; and z such that 1 > ... > x; > 2, can be written as some integral
combination in the form Z ciV(ygi), 0,...,0)®.. .®V(y,(£rl, 0,...,0) for some n,
ci, and yj(z) Consider thelgécomposition of V(xy,...,2x,0,...,0)®@V(z,0,...,0)
using Theorem 4.3.

Consider the standard Young tableaux, T, of shape p(z,0,...,0), which are

also (z1,...,2,0,...,0)-dominant. These are the nondecreasing columns of

length z with entries taken from the set of integers between 1 and k£ + 1 and

56



integers between 2m + 1 — k and 2m such that the following inequalities are

satisfied for 1 <i¢ < k — 1.

ri—oer(2m+1—14) > x4 (4.2)
T; — CT(2m +1-— Z) 2 Tit1 + CT(i + ].) - CT(Qm - Z) (43)
. —cr(2m+1—k) > ep(k+1) (4.4)

In the decomposition of V(zq,...,2,0,...,0)®V(z,0,...,0) using Theorem

4.3, each irreducible representation has a highest weight
(xl + CT(1> - CT<2m)7 R CT<k) - CT(2m +1- k)? CT(k + 1)7 07 cee 70)

for some standard Young tableaux, T, with shape p(z,0,...,0) and which is also

(x1,...,2,0,...,0)-dominant. All of these highest weights have
OSCT(IC—Fl)SZ—l

except in the case where T, a column of length z, contains only entries equal to k+
1 with ep(k+1) = 2. In this case, the highest weight is (21, xo, . .., 2, 2,0,...,0).
By induction, every other irreducible representation in the decomposition, except
for V(x1,...,2,,2,0,...,0), can be written as a some integral combination in

the form Y eV (51”,0,...,0) @ ... @ V(y};,0,...,0). V(z1,...,24,0,...,0)
=1

can be written as some integral combination in the form Z ciV(yY), 0,...,0)®
i=1
L ® V(y,(;) ,0,...,0) by the inductive hypothesis for the induction on k, so that

V(zy,...,2,0,...,0)@V(z,0,...,0) is equivalent to ZCiV(gAi),O, L 0)®..®
i=1

V®,0,....00®V(2,0...,0).
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By isolating the representation V(xy,...,xx, 2,0,...,0) in the decomposition
of V(xy,...,2x,0,...,0) ® V(2,0,...,0), V(xy,...,2x,2,0,...,0) can now be
written as some integral combination in the form ZCiV(yY), 0,...,0)®...®

=1

V(y,(;ll, 0,...,0). This completes the induction on z and thus the induction on
k.
m

This proof provides a recursive algorithm for finding the formal combination
as in (4.1) for any irreducible representation. For example, the first step in

determining (4.1) for V' (z1,...,xx,1,0,...,0) is the following identification:

V(zy, ..o x5, 1,0,...,0) = V(zy,...,24,0,...,0) @ V(1,0,...,0)

—( EB V(zy,...,x;+1,...,21,0,...,0))

Ti—17£T;
i=1,....k

— (P Vi, oz —1,.,24,0,...,0)).

4.3 A refinement of the recursive algorithm

For V(z1,...,xk41,0,...,0), assume z = xp,1 > 2k and all of the representations
of the form V' (z1,...,x,0,...,0) have known integral combinations in the form
of (4.1). Define the following algorithm.

For x1 # x4, define the representation

F(V(xy,...,2,0,...,0) @ V(2,0,...,0),2m)
=V(ry,...,2%,0,...,0) ®V(z,0,...,0)

—V(z1—1,...,2,0,...,0)®@ V(2 — 1,0,...,0).
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If x1 = x5, define the representation

F(V(xy,...,2,0,...,0) @ V(2,0,...,0),2m)

=V(ry,...,2,0,...,0) ®V(2,0,...,0).

Forx; # x;q with2 <i < k—1 orxz; > x;11 withi = k, define the representation

F(V(zy,...,2,0,...,0) ® V(2,0,...,0),2m + 1 —9)
=F(V(z1,...,24,0,...,0) ® V(2,0,...,0),2m + 2 — i)

—F(V(zy,...,x;—1,...,2,0,...,00 @ V(2 — 1,0,...,0),2m + 2 — ).

Forx; =x;1, 2 <i<k—1, define the representation

F(V(zy,...,2,0,...,0) @ V(2,0,...,0),2m + 1 —7)

=FV(x,...,2%,0,...,0) ® V(z,0,...,0),2m + 2 — i).

For x; # x;_1, 2 < i <k, define the representation

F(V(xy,...,25,0,...,0) ® V(2,0,...,0),14)
=F(V(z1,...,2%,0,...,0) ® V(2,0,...,0),i+ 1)

—F(V(zy,...,x;+1,...,24,0,...,0) @ V(2 — 1,0,...,0),i + 1).

For x; = x;_1, 2 <1 < k, define the representation

F(V(z1,...,2,0,...,0) @ V(2,0,...,0),17)

=F\V(z1,...,2,0,...,0) @ V(2,0,...,0),i + 1).
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Define the representation

F(V(xy,...,2,0,...,0) @ V(2,0,...,0),1)
=F(\V(ry,...,2x,0,...,0) ® V(2,0,...,0),2)

—F(V(x1+1,29,...,24,0,...,0) @ V(2 = 1,0,...,0),2).
Then,

V(zy,...,28,2,0,...,0) = F(V(z1,...,24,0,...,0) ® V(2,0,...,0),1).

This algorithm produces an integral combination equal to the representation
V(zy,..., 2, 2,0,...,0) of representations of the form V(z/,...,2},0,...,0) ®
V(2',0,...,0). Substituting in the integral combinations in the form of (1) for
the representations V (2, ..., z},0,...,0) yields the integral combination in the
form of (1) for V(xq,...,2%,2,0,...,0). The following is an explanation of how

the algorithm works.

Recall that

V(zy,...,2,0,...,00®@V(2,0,...,0) = @B V((@1,....2,0,...,0) + v(T))
T

for all standard Young tableaux, T, of shape p(z,0,...,0) and which are also
(1,...,2k,0,...,0)-dominant, which means all single nondecreasing columns,
T, of length z containing integers from the set of integers between 1 and k£ + 1

and integers between 2m + 1 — k and 2m and satisfying conditions (2), (3), and

(4).
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If z; # x;41, define a map from the standard Young tableaux, T, of shape p(z—
1,0,...,0) that are (z1,...,2;—1,...,2,0,...,0)-dominant and do not contain
integers from the set {2m + 2 —4,...,2m} to the standard Young tableaux, T,
of shape p(z,0,...,0) that are (z1,...,z,0,...,0)-dominant and do not contain
integers from the set {2m 4+ 2 —4,...,2m} by sending T to the tableau formed
by adding a 2m + 1 — ¢ to the bottom of the column.

This map is a bijection between all of the T and all of the T containing a
2m+1—1, taking into account the conditions (2), (3), and (4). The map preserves
the highest weights of the representations corresponding to these tableaux in the
respective decompositions V' (z1,...,2; — 1,...,24,0,...,0) @ V(2 — 1,0,...,0)
and V(zq,...,2,0,...,0)®@V(2,0,...,0) using Littelmann’s theorem, Theorem
43. For T — T, ep(j) = c3(j) for all j # 2m 4+ 1 — i, and cp(2m + 1 — i) =

c¢y(2m 4+ 1 — i) + 1. Therefore,

V(zy +c5(1) —cs(2m), ...,z — L+ c4(0) —cs(2m+1—1), ...,
zr + cp(k) —cs(2m+1—k),cq(k+1),0,...,0)
=V(zxy+er(1) —cer(2m),...,z; +cr(i) —er(2m+1—14),...,

zr + cr(k) —er(2m+1—k),er(k+1),0,...,0).

For z; # x;,1, when i = 1, the representation

F(V(z1,...,2,0,...,0) ® V(2,0,...,0),2m)
=V(z1,...,2%,0,...,0) @ V(2,0,...,0)

—V(x;—1,...,24,0,...,00 @ V(2 — 1,0,...,0)
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and when 2 <17 < k — 1, the representation

F(V(xy,...,2,,0,...,0) @ V(2,0,...,0),2m + 1 —7)
=F\V(r1,...,2,0,...,0) @ V(2,0,...,0),2m + 2 — 1)

—F(V(xy,...,x;—1,...,2,0,....,0) @ V(2 = 1,0,...,0),2m + 2 — 1)

is equal to GB V((z1,...,2,0,...,0) + v(T)) for all standard Young tableaux
T

of shape p(z,0,...,0) that are (z1,...,z,0,...,0)-dominant and do not contain

any integer from the set {2m +1—14,...,2m}.

For x; = x;11, when ¢ = 1, the representation

F(V(zy,...,2,0,...,0) ® V(2,0,...,0),2m)

=V(z1,...,2%,0,...,0) ® V(z,0,...,0)
and when 2 <7 < k — 1, the representation

F(V(z1,...,25,0,...,0) ® V(2,0,...,0),2m + 1 —9)

=F(V(z1,...,2%,0,...,0) @ V(2,0,...,0),2m + 2 — 1)

is equal to @ V((z1,...,2,,0,...,0) + v(T)) for all standard Young tableaux
T

of shape p(z,0,...,0) that are (xy,...,z,0,...,0)-dominant and do not contain

any integer from the set {2m + 1 —14,...,2m}.

For ¢+ = k, it is only important that z; > z, which is true for any highest
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weight. The representation

F(V(xy,...,2%,0,...,00 @ V(2,0,...,0),2m + 1 — k)
=F(V(ry,...,2,0,...,0) ® V(2,0,...,0),2m + 2 — k)

— F(V(xy,...,2x — 1,0,...,0)0 @ V(2 — 1,0,...,0),2m + 2 — k)

is equal to GB V((z1,...,2,0,...,0) + v(T)) for all standard Young tableaux
of shape p(z,B, ..., 0) that are (z1,...,7,0,...,0)-dominant and do not contain
any integer from the set {2m + 1 —k,...,2m}.

The standard Young tableaux, T, of shape p(z,0,...,0) and which are also
(1,...,2k,0,...,0)-dominant and do not contain any integer from the set {2m+
1 —k,...,2m} will only contain integers from the set {1,...,k + 1}. Note that
if T does not contain an integer 4, this is the same as saying cp(i) = 0.

For x; # x;_1, define a map from the standard Young tableaux, T, of shape
p(z—1,0,...,0) that are (xy,...,2;+1,...,2,0,...,0)-dominant and only con-
tain integers from the set {1,...,4,k + 1} to the standard Young tableaux, T,
of shape p(z,0,...,0) that are (xy,...,2,0,...,0)-dominant and only contain
integers from the set {1,...,4,k + 1} by sending T to the tableau formed by
adding an ¢ to the column.

This map is a bijection between all of the T and all of the T containing an
i, taking into account the conditions (2), (3), and (4). The map preserves the
highest weights of the representations corresponding to these tableaux in the
respective decompositions V' (z1,...,2; +1,...,2%,0,...,0) @ V(2 — 1,0,...,0)

and V(zq,...,2,0,...,0)®@V(2,0,...,0) using Littelmann’s theorem, Theorem
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4.3. For T T, cp(j) = c+(j) for all j # i, and ep(i) = ¢4(i) + 1. Therefore,

V(zy +es(1) —cs(2m), ..., + 14+ c5(i) —cs(2m+ 1 —14),. ..,
zr + ci(k) — e+ (2m+1—k),c(k+1),0,...,0)
=V(z1+cr(1) —er(2m),...,x; +cr(@) —er(2m+1—14),. ..,

zr +cr(k) —er(2m+1—k),er(k+1),0,...,0).
For z; # x;_1, when ¢ = k, the representation

F(V(zy,...,25,0,...,0) @ V(2,0,...,0), k)
=V(z1,...,2%0,...,0) ® V(z,0,...,0)

—V(zy,...,2x+1,0,...,0) ® V(2 — 1,0,...,0)
and when 2 <7 < k — 1, the representation

F(V(x1,...,2,0,...,0) ® V(2,0,...,0),14)
= F(V(z1,...,2%,0,...,0) ® V(2,0,...,0),i+ 1)

—F(V(zy,...,x;+1,...,24,0,...,0) @ V(2 — 1,0,...,0),7+ 1)

is equal to @ V((z1,...,2,,0,...,0) + v(T)) for all standard Young tableaux
T
of shape p(z,0,...,0) that are (xy,...,2,0,...,0)-dominant and only contain

integers from the set {1,...,i —1,k+ 1}.
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For x; = x;_1, when ¢ = k, the representation

F(V(xy,...,2%,0,...,0) ® V(2,0,...,0),k)

=F(V(ry,...,2,0,...,0) ®V(2,0,...,0),2m + 1 — k)
and when 2 <17 < k — 1, the representation

F(V(z1,...,24,0,...,0)® V(z,0,...,0),4)

=F(V(x1,...,240,...,0) ® V(2,0,...,0),i+ 1)

is equal to @ V((z1,...,2,0,...,0) + v(T)) for all standard Young tableaux
of shape p(z,TO, ...,0) that are (zy,...,24,0,...,0)-dominant and only contain
integers from the set {1,...,i—1,k+ 1}.

For i = 1, there are no restrictions on the number of times 1 appears in a

tableau (other than the size of the tableau), the representation

F(V(xy,...,2%,0,...,0) ® V(2,0,...,0),1)
=F(\V(zy,...,2x,0,...,0) ®@ V(2,0,...,0),2)

—F(V(z1+1,29,...,2,0,...,00 @ V(2 — 1,0,...,0),2)

is equal to @ V((z1,...,2,0,...,0)+v(T)) for all standard Young tableaux of
T

shape p(z,0,...,0) that are (x1,..., 2,0, ...,0)-dominant and only contain inte-

gers from the set {k+1}. The only tableau satisfying these conditions is the single

column containing only k£ + 1s. This tableau corresponds to the representation
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V(zy,...,x5,2,0,...,0). Therefore,

V(xy, ..., x,2,0,...,0)

=F(V(xy,...,7,0,...,0) @ V(2,0,...,0),1),
which is an integral combination of representations
Vv, o Yx, 0,...,0) @ V(2 —14,0,...,0)

for some y; and ¢. Substituting in the integral combinations for all of the
V(y1,- -, Yk, 0,...,0) yields the integral combination of V(x1,..., 2, 2,0,...,0)
with z = 2441 in the form of (4.1).

This algorithm can also be used when z < 2k. It can be applied until the
size of z is exhausted, thus simplifying the problem of determining the integral
combination to a reduced number of tableaux. If there are some equal terms,
x; = x;41, the algorithm may be completed for some z < 2k.

This algorithm also produces the following formula.

Proposition 4.5. For any irreducible representation of sp(2m,C) with highest
weight (xq,...,2k, 2,0,...,0), such that x; > x;11 +2 when 1 <i < k—1 and

z > 2k,

V(zy,...,x,2,0,...,0)

= Y (UM (Ve =iy 4 g1, wa — da+ fay o @ — ik + ik, 0,1, 0)
i1,...,ik€{0,1}
J1sJK€{0,1}
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fori=iy+...i and j = j1 + ... jp.

4.4 Examples

From earlier results, for any irreducible representation of sp(4,C) and V =

V(1,0), its formal combination is determined by

V(z,0) = Sym*V x>0
V(z,1) = Sym*V @ V — Sym*"'V — Sym* 'V x>1
V(z,y) = Sym®V ® Sym?V + Sym”“V ® Sym? 2V x>y > 2

—Sym* 'V ® Sym?" 'V — Sym* ™'V ® Sym?~'V.

This example can also be found using the results of the previous two sections.
To apply the refinement of the recursive algorithm to the case of sp(4,C) and

some V (z,y) such that z > y > 2, we do the following.

F(V(z,0)® V(y,0),4) =V (z,0) ® V(y,0) = V(z —1,0) ® V(y — 1,0).

F(V(z,0)@V(y,0),1) = F(V(z,0)®V(y,0),4) — F(V(z+1,0) @V (y —1,0),4)

and

F(V(z+1,00@V(y—1,0),4) =V(z+1,0)0V(y—1,0) = V(z,0) @ V(y — 2,0).
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Therefore,

F(V(2,0)® V(y,0),1)
= V(2,0)® V(y,0) — V(z — 1,0)® V(y — 1,0)

— (V(z+1,00®V(y—1,0) — V(2,0) ® V(y — 2,0))
= V(2,0)® V(y,0) — V(z — 1,0)® V(y — 1,0)

—V(z+1,00V(y—1,0)+V(z,0) @ V(y — 2,0),

and
Vi(z,y)
= F(V(z,0)®V(y,0),1)
=V(z,0)®V(y,0) = V(z - 1,0)®V(y — 1,0)
—V(Ez+1,0)@V(y—1,0)+V(z,0) @ V(y — 2,0).
Equivalently,

Viz,y) = > (-D)"V(@—i+j0)@V(y—i-j0).

ije{0,1}

For any irreducible representation of sp(6, C) with highest weight (x,y,0), its
formal combination is determined similarly as above. For V(zx,y,z) such that

x > y+ 2 and z > 4, the refinement to the recursive algorithm produces the
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following output,

V(z,y,2) =

V(z,y,0) ® V(2,0,0) ~V(z—1,4,0)® V(2 —1,0,0)
—V(z,y—1,0)®@ V(2 —1,0,0) +V(e-1y—-1,00®V(z—-2,0,0)
CV(y+1,000V(z—1,0,0) +V(r—1y+1,008V(z—2,0,0)
+ V(z,y,0) ® V(2 —2,0,0) —V(z—-1,9,00®V(z-3,0,0)
—V(z+1,y,00 @ V(2 — 1,0,0) + V(z,y,0) ® V(2 —2,0,0)
+V(Ez+1,y—1,00@V(z—2,0,0) — V(z,y —1,0) ® V(2 — 3,0,0)
Y V(@ Ly+1,00©V(z—2,0,0) — V(z,y+1,0)0 V(2 — 3,0,0)

~V(@+1y,0@V(z-3,0,00 +V(z,y,0)®@V(z-4,0,0).
This is equivalent to

V(Jf,y,Z) = E (_1>Z+]V(‘T_7'l +j17y_i2 —|—j270)®V(Z—Z—j7070)
ilyiQE{O,l}
J1,32€{0,1}

where ¢ = 41 + 19 and j = j1 + Jo.
Substituting in for the irreducible representations with highest weights of the

form (2/,y,0) and simplifying, this becomes

V(z,y,2)

0 1 2
= > sgn V(z+1,0,0)@ V(y+1—1,0,0)
11,l2,1 G{O,il,i?}
{|l1‘7|12?iv‘l3|}:{07172} ‘ll‘ ’l2’ ‘lg‘

®V(Z+lg —2,0,0).
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Note that all of the coefficients in this sum are £1, but this is not always the

case for any highest weight. For example, in sp(6, C),

V(1,1,1) = V(1,0,0) ® V(1,0,0) ® V(1,0,0)

—2V(2,0,0) ® V(1,0,0) + V(3,0,0) — V(1,0,0).

4.5 A general formula

Now, we will expand the formula explicitly calculated in Section 4.4 for V(x, vy, 2),
such that * > y+2 and z > 4, to a general case for representations in sp(2m, C)

with highest weights of sufficient size.

Theorem 4.6. For any irreducible representation of sp(4,C), which is denoted
by V(xy,...,21,0,...,0), such that x; > x;q1 +2(k —1—14) when 1 <i<k—1

and x, > 2k — 2,

V(zy,...,2%,0,...,0) =

0 1 ... k-1 k
Z sgn ®V($n+ln—n+1,0,...,0).

Uy €40, £ 1, (k1) n=1
T =0 k1) Gl 1| 13

Proof. We will argue by induction on k. The case when k = 1 is trivial. When
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k=2 and z9 > 2,

V(Il,l’g,o, ce ,0)

= ) (=D)"V(zy—i+40,...,0)@V(xz—i—j0,...,0)

i,je{0,1}
0 1
= Z sgn V(1 +14,0,...,0) @ V(xg + 15— 1,0,...,0)
I1,l2,€{0,£1} 1] |l

{ltals[t2]}={0,1}
= V(l’l, 0) & V(ZL’Q, O) — V(.I'l — 1, O) X V(.TQ — 1, 0)

- V(xl + 1, 0) & V(SL’Q — 1, 0) + V(Q?l, 0) & V(SL’Q — 2, 0)
Assume the statement of the theorem for k. Let x5, = 2z, we want to show

V(zy, ..., 28,2,0,...,0) =

o 1 ... k kt1
Z sgn ®V($n+l;—n+1,0,...,0)

Uyl 1 €40,£ 1,3 (K)} ’lﬂ \1’2\
{10 ]|ty F=H0,1, R

[leial ) ™=

for x; > x4 +2(k—1i) when 1 < i < k and z > 2k. Call this sum S’. The tensor

products in this sum are indexed by a k-tuple, (I},..., 1 ).

From Proposition 4.5,

V(z, ..., 28,2,0,...,0)

= Z (—1)i+j(V(a:1—@'1+j1,x2—i2+j2,...,xk—ik+jk,0,...,0)

Applying the inductive hypothesis to V(xy — i1 + ji,..., 2k — i + jx,0,...,0)
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yields the following,

V(zy,...,x,2,0,...,0)
1 ... k-1

= > > (—=1)"sgn

150y €{0,1} 1 e €{0, 2L, (k= 1)} ‘L] ] o |
J1yeees jke{ovl} {llll vvvv ‘lk|}:{071 7777 kil}

k
(QV(wn —in+jn+1ln— (n—1),0,...,0) @ V(2 —i—35,0,...,0).
n=1

Call this sum S. The tensor products in this sum are indexed by three k-tuples

ST 7
of the form | ;. j, |- Foragiven (If,... 1} ), we will show that there is
S
11 ... Ik
exactly one | 5 4, | such that, for 1 <n <k,
ST /8

and

N 0 1 .. k-1 0 1 ... k=1 k
(—1)"sgn = sgn

[l [l o [l LTI Y I N B Y
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T

We will now give an explicit description of how to calculate this

Juoe-e Uk
I ...
from (I},...,l;, ), and with some thought, it is easy enough to see that this is

the only way to choose the proper index.

11 ... Ik
For a particular (I},...,l; ), choose [ j jr. | in the following way.
by .. g
... i 0 ... 0
It ly =k theni+j=0and [5 . j |isequalto o ... of. If
Lo Lo
... i 1 .01
liyn = —k, then i +j =2k and | j, ... j, | isequalto [1 = 1| I
Lo U i Iy

Il| = k for s # k+ 1, take iy = 1, js = 0, and [y = —(k — 1) if [, = —k and
take is = 0, js = 1, and [y = k — 1 if I, = k. Next consider |I!| = k — 1 and
ifr #k+1takei, =1, 5. =0, and [, = —(k—2) if [l = —(k — 1) and take

i, =0,75=1,and [, = k—21if I, = k — 1. Continue with this process until

11 Zk
|lj+1] = k —t for some 0 < ¢ < k. For the other entries in | ;, = j, |, take
L L

lo = I}, and take i, = 0 and j, = 0if [, = k —¢ > 0 and take i, = 1 and

Jo = 1if [, = —(k —1t) < 0. Note that if I, ., = 0, all of the entries have
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already been determined by the earlier process. Now for a particular element in

S" indexed by (I3, ...,1} ), we have the same element appearing in S indexed by
i
the corresponding | 5, ... j, | and with the same sign attached.

SR

The symmetric group on k letters acts on the elements of S by permuting the
i1 ... g i1 ... g

columns of the index of an element, | ;= ;. [. Bach | ;= 4 | that
Lo g SR /8

corresonds to an element in S’ as described above is the result of a permutation

applied to one of four types. These four types are indexed by the following.

0 0 ... 0
Dlo o ... 0
0 £1 ... £(k-1)
0 ... 0 in g
2)lo ... 0 n n for some 1 < n < k and
0 ... ¥(n—2) £(n—-1) ... £(k-1)
with 4, = 0,5, = 1 for [, = r—1and i, = 1,5, = 0 for [, = —(r — 1) for

n < r < k. Note that when n = 1, either iy =0 and j; =1 or7; =1 and j; = 0.

1 1 ... 1
311 1 1
0 +1 +(k—1)
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1 ... 1 i . i,

H01 .. 1 n n for some 1 < n < k and
0 ... #(n—2) +(n—1) ... £(k—1)
with ¢, = 0,5, = 1 for [, = r—1and i, = 1,5, = 0 for [, = —(r — 1) for
n <r <k. When n =1, this coincides with the second type for n = 1.

Now we will prove by induction on k that S = S’ by showing that S = S+ 55,
where 57 is a subsum containing only those elements corresponding to elements in
the sum S’, in other words S; is equal to the sum of all of the elements indexed by
permutations of the four types of indices listed above, and S, = S —S; = 0. The
case where k = 1 was shown earlier. In this case every term in S corresponded
to a term in S and there was no cancellation, so that Sy = 0 trivially. The case
where k& = 2 was also explicitly calculated. Assume S = S} + S, such that S; = 5’
and S, = S —5; =0 for k —1 and take k > 2. We want to show S = S; + S5
such that S; = 5" and Sy =5 — 5, =0 for k.

S 7

Consider all | ;. 4, | with a fixed [, = +(k — 1) and fixed i, and j,.

Lok
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Consider the following subsum contained in S,

{
S(rv_r;irajr)
|0, |
o 1 .. k-1
- X > (~1)*sgn
i15eesiroyin €01} U1yl I €{0,£1,... . £(k—2)} 1) |l oo |l

F1seeesdrreesdk €40, {Jin |ywn I | |1 3={0,1,... . k—2}

k
Q) V(@ —in+ o+ 1o — (n—1),0,...,0)@ V(2 = (i + ),0,...

n=1
n#r

QV(e, —t,+ 74+ 1 —(r—1),0,...,0).

This sum is equal to

(_1)(kfr)(_1)(ir+jr)( Z Z (_1>7§+J’*ir*jr

i1y zT ..... ir€{0,1} I, lpe{0,41,...,£(k—2)}
F1seeesdrree s dk €40} {J1 |y |l |y 1 3={0, 1. k—2}
0 1 ... o k=2 k
sgn ®V(xn—z'n—|—jn+ln—(n—l),O,...
LY S R A R Ty =t

@V((z =iy —J) = i+ —ir = jr).0,...,0))
@ V(e —ip +jr + 1 — (r—1),0,...,0)

= (_1>(k_r)<_1)(ir+jr)(R) ® V(‘rr — U +J7‘ + l'r - (T - 1)7 07 ceey 0)
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The sum R is equal to

Z Z (_1)z’+j—ir—jr

W yeeestryeeny i €{0,1} 11yl I €40, %1, (k—2)}
Jrseeosdrses k€101 (U], lr ][l | 3=40,1,.. b —2}

0o 1 ... k=2 F
sgn Q) V(@ — in + jn + 1 — (n—1),0,...,0)

LY 1) B 1% O U [ A

@ V((z—ir—jr) = (i +J—ir = j),0,...,0).

Apply the inductive hypothesis to R. By the inductive hypothesis for k& — 1,
R is equal to Ry + Ry such that R; contains a sum of elements indexed by
permutations (from the symmetric group on {1,...,r—1,7+1,... k}) of the four
special types, with the r-th column removed, and Ry, = R — R; = 0. Therefore,
R = R;.
Now
Ly

S(T’, ITHE iTJjT)
L |

= (_1)(kir)(_1)(ir+jr)(R) ® V<xr — 1+ jr + lr - (T - 1)7 07 v 70)
= (_1)(k7T)(_1)(iT+jr)(R1) ® V(':C?" — 1y +jr + lr - (7’ - 1)7 07 <. 70)

I |

(X 1)
(;{ jjjj-’;) il ol o [

... L,

k
®V(a:n—z'n+jn—|—ln—(n—l),O,...,O)@V(z—(z’—l—j),O,...,O))
n=1
n#r

@ V(z, =i+ 75+ 1 —(r—1),0,...,0)
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forall [ j, ... 4, | with the fixed r-th column and the rest of the matrix equal
Lo Uk
to a permutation (from the symmetric group on {1,...,r — 1,7+ 1,...,k}) of

one of the four types.

S= > S(reinj)
re{l,...k}
ee{—1,+1}
ir,jr€{0,1}

for the subsums S(r, €, i, j,), and all of these have been reduced by the inductive
hypothesis.

We will show that for the remaining elements in the subsum Sy = S — Sy,
which have not been cancelled out by the application of the inductive hypothesis,

there is a well-defined pairing of elements into disjoint pairs such that the sum of

... g
the elements in a pair is equal to zero. Notice that two indices | 5, . 4, | and
b0 U
G gt
i will correspond to elements that will sum to zero if — (i1, ..., i) +

(j17"'7j/€)+(l17"'ﬂlk) = _(7’/17722)+(j17ajllg)+<l/1a7l;c)a Z+] = i/+j/7
and the signs associated to (ly,...,l;) and (I1,...,1}) are different.

Define the set M to be the elements in the reduced Sy = S — S;. This means
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all of the elements indexed by a matrix M = | j . j, | such that if the
oo g

l, = £k — 1, then M is not a permutation of one of the four special types of

indices but with the r-th column removed it is a permutation of one of the four

special types of indices (for k — 1). This means any M is a permutation of one

of the following.

0o 0 ... 0 ik
Dlo o ... 0 i . The last two columns are equal to one
0 1 ... £(k—2) £(k—-1)

of the following

0 1 0 0 0 1
0 0 ; 0 1 , OF 0 1
+(k-2) (k—1) +(k—-2) —(k—1) +(k—-2) £(k-1)
0 0 in lg—1 Uk
2) 1o ... 0 Jn Jh_1 I for some 1 < n <
0 ... +(n—2) +(n—1) ... +(k—-1) (k-1

k—1and with i, =0,5, =1forl, =r—1and i, =1,j. =0 for [, = —(r — 1)
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for n <r <k —1. The last two columns are equal to

1 0 1 1 1 0

0 o || o o [ o 1|
—(k-2) (k-1 \-(k-2 k-1 \-(k-2) —(k—1)

1 1 0 0 0 1

0 TR I o |.] 1 o |-
—(k-2) x(k-1] \(k—=2) xk-1) \(k-2) (*k-1)

0 0 0 1
1 1 , Or 1 1
(k—2) —(k—1) (k—2) £(k—-1)
1 1 1 Uk
N1 1 . 1 I . The last two columns are equal to one
0 1 ... £(k—2) +(k—-1)

of the following,
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4 11 ... 1 In Jr—1 Ik for some 1 < n <

0 ... £(n—2) x(n—1) ... x(k—1) £(k—1)
k—1and with i, =0,5, =1forl, =r—1and i, =1,j. =0 for [, = —(r — 1)

for n <r <k — 1. The last two columns are equal to

1 0 1 1 1 0

0 o || o o [ o 1
—(k-2) (k-1 \-(k-2) E-1] \-(k-2) —(k—1)

1 1 0 0 0 1

0 TN I o |-] 1 o |-
—(k-2) x(k-1] \(k—=2) xk-1) \(k-2) (k-1

(k—2) —(k—1) (k—2) +(k—1)

Now define a function = : M — M. We will define it for elements with these
four types of indices in terms of their indices. Then the definition for any other
element can be found by endowing = with the property that Z(c M) = 0Z(M)
for any o € S, and any index M of an element in M. = is now defined for all
elements in M because any index of an element can be found as a permutation

of one of these four types of indices.
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0 0

1) Given indices of the form | o ¢

following way.

0

+1

0 =*=1

—(k=2) —(k-1)
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0 "
0 Tk

t(k—2) +(k—1)

0 0 1 0
0 0 0 0
0 +1 (k—1) (k—2)
0 0 0
0 0 0
0 +1 —(k—1) (k—2)
0 0 1 0
0 0 0 0
0 =+1 (k—1) —(k—2)
0 0 0 0
0 0 1 0
0 £1 ... —(k—=1) —(k-2)

, define = in the




0 0 0 1 0 0 1 0
0 0 0 1 — 0 0 0 1
0 =+1 (k—2) (k—1) 0 =+1 (k—1) (k—2)
0 0 0 1 0 0 0 0
0 0 0 1 — 0 0 1 1
0 =+1 —(k=2) (k—1) 0 +1 —(k—1) (k—2)
0 0 0 1 0 0 1 1
0 0 0 1 — 0 0 0 0
0 +1 (k—2) —(k—1) 0 +1 (k—1) —(k—2)
0 0 ... 0 1 0 0 .. 0 1
0 0 ... 0 1 = 1o o .. 1 0
0 +1 ... —(k—2) —(k—1) 0 +1 ... —(k—1) —(k—2)

2) Given indices of the form

0 ... 0 in Th_1 n
0 ... 0 Jn Jk—1 Jk
0 ... ¥(n—2) £(n—-1) ... £(k—-1) £(k-1)

for some 1 <n <k—1and with¢, =0,5., =1forl, =r—1landi.=1,5.=0

for [, = —(r — 1) for n <r < k — 1, define the Z in the following way.
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0 0
0 1
(k=1 (k=2)
0 1
0 0

1 0
1 1
(k=1 (k-2)
1 1
1 0




1 0 =
(k—2) (k—1)
0 0
1 0 =

0 1
1 1 =
(k—2) (E—1)
0 1
1 1 =

C (k-2 —(k—1)

When n = k — 1, define = in the following way.
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0 0
0 1

(k=1) (k=2)

0 1

0 0

1 0
1 1
(k—1) (k—2)
1 1
1 0




1 1 1 0

0 0o |~ 1 0
—(k—2) (k—1) —(k—1) (k-2)

1 0 1 0

0 1 = 1 0
—(k=2) —(k-1) —(k=1) —(k-2)

0 1 1 0

1 O 1 0
(k—2) (k—1) (k—1) (k—2)

0 0 1 0

1 1 = 1 0
(k—2) —(k—1) (k=1) —(k—2)

When n > k — 1, either iy =1, jro =0, and ly_o = —(k — 3) or i5_2 = 0,

Jk—2 =1, and l;_o = k — 3. Define = in the following way.

86



1 1 0 0
0 0 = 1 1
—(k —3) (k—1) —(k—1) (k —3)
0 1 1 0
1 0 = 0 1
(k—3) (k—1) (k—1) (k—3)
0 0 1 1
1 1 = 0 0
(k=3) —(k—=1) (k—1) —(k—=3)
1 0 0 1
0 1 = 1 0
—(k—3) —(k—1) —(k—1) —(k—=3)
1 1 1 1k
3) Given indices of the form | 1 1 . 1 n , define = in the
0 +1 ... £(k—2) £(k-1)

following way.
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0

+1

—(k=2) —(k—-1)
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0

+1

—(k=1) —(k—-2)




11 1 0 1 1 1 0
11 1 o |~ 11 0 1
0 =+1 (k—2) (k—1) 0 =+1 (k—1) (k—2)
11 1 0 11 0 0
11 1 o |~ 11 1 1
0 =+1 —(k=2) (k—1) 0 +1 —(k—1) (k—2)
11 1 0 11 1 1
11 1 0 = 11 0 0
0 +1 (k—2) —(k—1) 0 +1 (k—1) —(k—2)
11 ... 1 0 11 ... 0 1
11 ... 1 0 =l 1 1 0
0 +1 ... —(k—2) —(k—1) 0 +1 ... —(k—1) —(k—2)

4) Given indices of the form

1 ... 1 In Tj—1 U
1. 1 R . ik
0 ... ¥(n—2) £(n—-1) ... £(k—-1) £(k-1)

for some 1 <n <k—1and with¢, =0,5., =1forl, =r—1landi.=1,5.=0

for [, = —(r — 1) for n <r < k — 1, define Z in the following way.
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0 0
0 1
(k=1 (k=2)
0 1
0 0

1 0
1 1
(k=1 (k-2)
1 1
1 0




1 0 =
(k—2) (k—1)
0 0
1 0 =

0 1
1 1 =
(k—2) (E—1)
0 1
1 1 =

C (k-2 —(k—1)

When n = k — 1, define = in the following way.
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0 0
0 1

(k=1) (k=2)

0 1

0 0

1 0
1 1
(k—1) (k—2)
1 1
1 0




1 1 0 1

0 0o |~ 0 1
—(k=2) (k-1 —(k—=1) (k—=2)

1 0 0 1

0 1 - 0 1
—(k=2) —(k—1) —(k=1) —(k—2)

0 1 0 1

1 O 0 1
(k=2) (k-1) (k—=1) (k—2)

0 0 0 1

1 1 = 0 1
(k—2) —(k—1) (k=1) —(k—2)

When n > k — 1, either iy,_o =1, jr_o =0, and lj_o = —(k — 3) or ix_o = 0,

Jrk—o =1, and ly_o = k — 3. Define = in the following way.
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—(k—3)

= is well-defined because it sends any element in M to another such element.
This is obviously true for the elements with the particular indices = was explicitly
defined for, and since M is invariant under Sy, this is true for all elements in M.
It is also easy enough to verify that =2 = Id. Let [M] be the element indexed
by the matrix M, and let sgn(M) be the sign associated to that element. Then
Sy = > [M]. Also, {M € M|sgn(M) =1}| = [{M € M |sgn(M) = —1}| and

MeM

sgn(=(M)) = —sgn(M). Therefore = is a bijection between {M € M |sgn(M

—(k-1)
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—(k-1)

—(k—=3)




1} and {M € M |sgn(M) = —1}.

Se= Y M+ Y EMI= Y (M]+[EM))

MeM MeM MeM
sgn(M)=1 sgn(M)=1 sgn(M)=1

We claim that [M] + [Z(M)] = 0 for every M € M. Again, we only need to
consider M as one of the four special types because for any other index o M for
some o € Sy will have [cM] + [Z(ocM)] = [oM] + [0=(M)] = o([M] + [E(M)]) =
a(0) = 0.

To see [M] + [E(M)] = 0 for some M that is one of the four special types,

it is enough to show M and Z(M) satisfy the three necessary conditions. For

T i
M= 14 ... j,|adE(M) =] . ji |+ it is an easy calculation to
Lo I bl

— (i1 osi) + (oo k) + (Lo k)

= —(1), .y 0) + (1, dr) + (L 1)
Also, =(M) does not change the number of entries equal to 1 in the i, and js
slots for M. Therefore i + j = i’ + j'. Also, Z(M) involves a transposition of
(I1,...,1;), so the signs associated to the elements are different.

Therefore, Sy = Z 0 = 0. This completes the proof.

MeM
sgn(M)=1
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