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Abstract

Any irreducible representation of sp(2m, C) can be expressed as a formal sum of tensor
products of symmetric powers of the standard representation. First I will present a basic
result from linear algebra, which lays the foundation for an initial case of this statement.
Then I will prove the general statement, which involves the application of Littelmann’s
work with Young diagrams in the context of decomposing a tensor product of two irre-
ducible representations of sp(2m,C). Finally I will set up an algorithm for finding such
sums and provide some of the consequences in the cases of sp(4,C) and sp(6,C) and two
general formulas.
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1 Introduction

Finite-dimensional representations of classical Lie algebras have been studied since the
19th century, and have found many applications in Mathematics and Physics. It is there-
fore surprising that basic questions remain unanswered, even in low-dimensional cases. For
example, an explicit formula for the weight multiplicities in finite-dimensional representa-
tions of sp(4,C) has only been published in 2004 in [3].

Any irreducible representation of sp(2m, C) can be expressed as a formal sum of tensor
products of symmetric powers of the standard representation. This is the main result of
this note along with an algorithm for determining such formal sums and two formulas.

In [1] and [8], the authors, Akin and Zelevinskii respectively, independently prove an
identity expressing any irreducible representation of GL(n,C) as a formal sum of tensor
products of symmetric powers of the standard representation using resolutions. We will
present a different approach for Lie algebras of type C,.

We first present a useful identity between finite-dimensional representations of the rank
m symplectic Lie algebra. In Sections 2 and 3, using an elementary approach, we develop
this first identity. It is based on a general result involving multilinear algebra for symmetric
tensors; see Proposition 2.1 and Corollary 2.2. While these are certainly well known to
experts, we have included proofs for completeness. Our first result, Theorem 3.1 (and
subsequently Corollary 3.2), follows from this together with the explicit determination
of certain highest weight vectors occurring in a tensor product of symmetric powers of
the standard representation of sp(2m,C). Corollary 3.2 then shows how an irreducible
representation can be expressed as a linear combination of tensor products of symmetric
powers of the standard representation.

In Section 4, we use Littelmann’s generalization of the Littlewood-Richardson rule in
[7] and apply it to Sp(2m) to prove the main result of this note, Theorem 4.2. This theorem
states that any irreducible representation of sp(2m, C) can be expressed as a formal sum
of tensor products of symmetric powers of the standard representation, and the method of
proof creates an algorithm for finding such a sum. In Section 5, we present a refinement of
the algorithm from the proof along with a formula, which simplifies the process for finding
the formal sum.

In Section 6, we show examples for the symplectic Lie algebras of rank 2 and 3. At
the end of this note in Section 7, we present a final formula that explicitly determines the
formal sum for a general case.

The original motivation for these identifications was to calculate L- and e-factors for
representations of the real Weil group, which requires precise multiplicity information.
However, we hope that the results of this paper are of independent interest beyond this
immediate application.

2 A result on symmetric tensors

For a positive integer n, let S, be the symmetric group on n letters. For this section,
let V be a finite-dimensional vector space over a field with characteristic zero, F'. S, acts
linearly on V" by o0(11 ®...Qu,) = Vy=1(1) @+ . ®Vy—1(y). Let sym : V& 5 VO be the

usual symmetrization map, i.e., sym(v) = Z o(v). The kernel of this map is spanned
oESn

by all elements of the form v — o (v) for v € V®™ and o € S,,. We denote by Sym™ (V') the

image of sym or equivalently the quotient of V®™ by the kernel of sym.

Let V have the basis {v1, vz, ..., vt }, and let V* be the dual space with corresponding
dual basis {f1, f2,..., fx}. Let W be another finite-dimensional vector space over F with
the basis {w1,w2,...,w;}. Using the given bases of V and W, we identify the standard
basis elements of Sym"V ® Sym™ W with pairs of k- and I-tuples (c1,...,cx) X (d1,...,d;)
such that, for a particular basis element, ¢; equals the number of times v; appears in that
basis element and d; equals the number of times w; appears in that basis element. When
W = V™, 1 =k and the standard basis elements of Sym™V ® Sym™ V™ are identified with



pairs of k-tuples such that ¢; is as before and d; equals the number of times f; appears in
the basis element. The standard basis for Sym"V ® Sym™ W is then given by

k l
{(61,...,Ck) X (d1,...,dl) ‘ ¢ € Z>o0,d; 622072673 :n,Zdj :m}.
j=1

=1

For z,y > 1, consider the linear map p : Sym® 'V ® Sym?"'V* — Sym*V ® Sym?V*
with the property

sym(a1 ® ... ® ag—1) @sym(f1 @ ... By—1)
k
— Zsym(al ®R...00-1Q0;)R@sym(f1®...Q By—1 fi).
i=1
k
This is the map defined as multiplication by the element Z v; ® fi, which generates the
i=1
trivial representation in V' ® V*. The following shows p is an injective intertwining map.
Proposition 2.1. Let V and W be finite-dimensional representations of a Lie algebra L,
such that there is a trivial representation contained in V & W. For integers x,y > 1, let
¢ : Sym® 'V @SymY'W — Sym®V ® Sym?YW be the linear map defined as multiplication
by some fixed generator of the trivial representation. Then p is an injective intertwining
map.

Proof. Given V and W are representations with the previously-defined bases, let Z Qi Vi
,J

wj, for some coefficients a;;, generate a trivial representation in V®@W, and assume without

loss of generality a11 # 0. Then p becomes the linear map defined by the property

sym(ar ® ... Q Ap—1) @sym(f1 ® ... ® By—1)

kol
— ZZaijsym(al ®R...Q0az—1 Qv;) ®sym(f1 ® ... R By—1 ® w;j).

i=1 j=1

To prove injectivity directly, first consider an element of the kernel of p written as a
linear combination of basis vectors (c1,...,cx) % (d1,...,d;) of Sym® ™'V ® Sym¥~'W.

v = Z b(eysoson) x(drsendy) €1y oscl) X (di, ..., dy)

for some constants bic,,...c,)x(d1,....q;)- Then, p(v) = 0 in Sym“V ® Sym*W, and p(v)
written as a linear combination of basis vectors (e1,...,ex) X (f1,...,f1) of Sym*V ®
SymYW will have its coefficient of (e1,...,ex) X (f1,..., fi) equal to

§ : aijb(el ,,,,, ei—Lser )X (f1yeesfj—1ss 1) =
1Y)
ei,fj#0

We now note that each element of the standard basis of Sym®~ 'V ® Sym? W is of the

form (x — ri,c2,...,¢ck) X (y — r2,da, ..., d;) for some 1 such that 1 < 7 < z and some
k I

rg such that 1 < ro <y, with ¢;,di € Zxo, Zci =ry —1, and Zdi =71y — 1. It is
=2 =2

then straightforward to prove by induction on s = r; + r2 that each of the coefficients

b(177"17C2a~-<ack)><(97727d27~'1dl) = 0 thus proving ker(p) = {0}

[eo]
To prove injectivity an alternate way, let Sym(V') be the algebra @ Sym"V. Then

n=0

Sym(V) ® Sym(W) = Sym(V + W) is isomporphic to the set of polynomials on (V* 4+ W)



over F', which has no zero divisors. This implies p is injective because in this setting, p is
equivalent to multiplying certain homogeneous degree x — 14y — 1 polynomials by a fixed
homogeneous degree 2 polynomial.
The intertwining property of p is easy to verify using the fact that Zaijvi ® wj
.7
generates a trivial representation in V' ® W. This concludes the proof. O

The dual map to p (with 2 and y interchanged) is the linear map p* : Sym®V ®
Sym?V* — Sym®* 'V ® Sym?~'V* with the property

sym(a1 ®@... @ az) @sym(f1 ® ... ® By)

=YY Bila)sym(an @9 di® ... Q) @sym(Bi®...Q B ®...® By).

i=1 j=1
p* is a surjective intertwining map.
We obtain the following result from Proposition 2.1.

Corollary 2.2. Let V be a finite-dimensional representation of a Lie algebra. Then there
exists an invariant subspace

Sym® 1V ® Sym? " 'V* C Sym®V @ Sym¥V* for all integers x,y > 1.

3 The case of sp(2m,C)

We will apply the above result of Corollary 2.2 to representations of the Lie algebra
sp(2m,C) = {A € gl(2m,C) | A"J + JA = 0}.

Here J = | 79m o] and J,y, is defined to be the m xm anti-diagonal matrix with ones along
the anti-diagonal. Evidently, sp(2m, C) is (2m? + m)-dimensional and has the following
basis,

{Hi} = {exr — e2mt1-k,2m+1-klk =1,...,m},

{Xa} = {61']' - €2m+17j’2m+17¢|(7;,j) = (]., 2), ey (l,m), (2,3), ey (Z,m), ey (m - l,m)}
@] {ei,2m+1,j + 6j’2m+177;|(i,]') = (1, 2), ey (1,m), (2,3), ey (Z,m), ey (m — 1,m)}
U{es2mt1—ili = 1,...,m},

and
{Yo} = {Yo = Xo}.

In this basis, the Cartan subalgebra is h = (H1, ..., Hn), and for each root «,
% = span{Xa, Yo, Ha = [Xa, Ya]} 2 sl(2,C).

Any weight (x1,22,...,Zm) can be thought of as the eigenvalues associated to Hi
through H,,, respectively, for the corresponding weight vector. The weights in the domi-
nant Weyl chamber are {(z1,...,2m) € Z™ : 21 > x2 > ... > Ty > 0}. Let V(z1,...,2m)
be the irreducible representation with highest weight (z1,...,Zm).

The Weyl dimension formula, tailored to our situation, appears in [5], Section 7.6.3. It
states that

[T wt(Xe) - (@1, ... 2m) + wit())

a>0

dimV(z1,...,2n) = T[T wt(Xa) - wt(s)

a>0



where wt(X4) is the weight of X, in the adjoint representation, - is the normal dot product,
0 is half of the sum of the positive roots, and wt(d) is the weight of § in the adjoint
representation.

The standard representation of sp(2m,C) is V(1,0,...,0). It has the standard ba-
sis {e1,...,eam} and is isomporphic to its dual representation with corresponding basis
{fi,..., fam}. These representations are isomorphic via f; — eamyi—; for m+1 < i < 2m
and f; — —eam+1—; for 1 < j < m. The weights of V(1,0,...,0) are

{(1,0,...,0),...,(0,...,1),(0,...,0,—1),...,(=1,0,...,0)},

and e; is a highest weight vector.

It can be easily shown that V(n,0,...,0) = Sym"V (1,0, ...,0). First, there is a highest
weight vector, sym(er ® ... ® e1), in Sym"V(1,0,...,0) with weight (n,0,...,0), and
therefore V(n,0,...,0) C Sym"V(1,0,...,0). Then using the Weyl dimension formula,
V(n,0,...,0) has the same dimension as Sym"V(1,0,...,0) and thus V(n,0,...,0) =
Sym"V(1,0,...,0).

Theorem 3.1. For sp(2m,C) and its standard representation V =V (1,0,...,0),
y
Sym®V ® Sym?V = (Sym” 'V @ Sym?”"'V) & @V(m +y—p,p,0,...,0)
p=0
for integers x >y > 1.

Proof. Given x > y and using the previously described basis, we define for all integers p
such that 0 < p <y the following vector in Sym®*V ® SymYV™,

P
UPZZ(P> (=) (z—p+i,p—14,0,...,0) x (0,...,0,i,y — i)

2
i=0

p
- (I;) (—1)’sym(e1 ®...®e1®e2 @ ... ® ea)
=0 .

x—p+1i p—1i
® sym(fom-1® ... ® fam-1® fom @ ... R fom).

7 y—1i

This vector is in the kernel of the map p* defined in Section 2 because (x — p + i,p —
1,0,...,0)x(0,...,0,4,y—) = 0+...40 = 0. Also, this vector is a highest weight vector
with weight

+14(0,1,0,...,0) + (y — i)(1,0,...,0) = (x + y — p,p,0,...,0).
To see v is a highest weight vector, it is enough to show that it is in the kernel of X, for
any a.
First, the only relevant calculations are X,.e1, Xo.€2, Xo.fom, and Xa.fom—1. These
will all be equal to zero except when X, = e12 — e2m—1,2m. Therefore, we only need to

show v, is in the kernel of X, = e12—ea2m—1,2m. Call this root Xi2. X12.1 = X12.fom =0,
Xi2.e2 = e, and X12.f2m71 = f2m. By deﬁnition,

X2 (x —p+1i,p—1,0,...,0) x (0,...,0,4,y — 1)
=Xiesym(e1 ®...Qe1 Qe ®...Qe2) sym(fom—1® ... Q fom-1Q fom ® ... ® fom).

z—p+i p—1i i y—i




This becomes

(z—p+i)sym(Xi2e1Q0e1®...0e1Qe2®...Qe2)
& Sym(f27nfl ®...® f27n71 ® f2m ®...0 f27n)
+(p—i)sym(e1 ®...Qe1 @ Xi12.e2RQe2® ... R e2)
@ sym(fom-1®...® fom-1® fom @ ... ® fom)
+()sym(e1 ®...0e1 Qe ® ...  e2)
® sym(Xiz2.fom—1® fom-1Q ... ® fom-1® fom @ ... ® fom)
+(y—i)sym(e1®...0e1Qe2 ®...R® e2)
@ sym(fam—1® ... ® fam—1 ® X12.fom ® fom @ ... ® fom).
This is equal to (x—p+14)(0)+(p—i)(x —p+i+1,p—i—1,0,...,0)x (0,...,0,2,y—i)+
(@) (x—p+i,p—1,0,...,0) x(0,...,0,e =1,y —i+ 1)+ (y —4)(0) (with the understanding
that when ¢ = p there is no second term and when ¢ = 0 there is no third term here). From
here X12.v, = 0 is a straightforward calculation.
For each of these highest weight vectors, vp, with weight (z +y — p,p,0...,0) and in
the kernel of p*, there is an irreducible representation V(z +y — p,p,0,...,0) contained
in the kernel. Since all of the weights {(z +y — p,p,0...,0) : 0 < p < y}, are distinct,

Z:o V(z+y—p,p,0,...,0) C ker(p).

It follows from semisimplicity and the surjectivity of p* that

Yy
Sym* Ve sym' V) e PV +y—p,p,0,...,0)

p=0
C (Sym® 'V @ Sym?"'V*) @ ker(p*)
= Sym”V ® Sym?V*
for x > y > 1. The Weyl dimension formula shows that this inclusion is actually an

equality. Note that V* can be replaced by V since this representation is self-dual. (I

Note that all of the highest weight vectors in Sym”V ® Sym"V, V = V(1,0,...,0),
can be determined using the proof of Theorem 3.1, the map p from Section 2, and the
isomorphism between the standard representation and its dual.

Corollary 3.2. For integers x >y =1,
V(z,0,...,0) ® V(1,0,...,0) = V(z+1,0,...,0) & V(z,1,0,...,0) ® V(z — 1,0,...,0)
Forx >y >2,
(V(z,0,...,0) ® V(y,0,...,0)) & (V(z,0,...,00 @ V(y — 2,0,...,0))
=WV(x+10,...,009 V(y —1,0,...,0)) & V(z,9,0,...,0)
@& V(z-1,0,...,00V(y—1,0,...,0))

Proof. Recall Sym™V (1,0,...,0) = V(n,0,...,0). The first assertion is the special case
of Theorem 3.1 where y = 1. Using Theorem 3.1, when = > y > 2,

V(z,0,...,0) ® V(y,0,...,0)

Y

p=0
and
V(z+1,0,...,00® V(y — 1,0,...,0)
y—1
p=0
Combining these equations yields the assertion. (I



In the Grothendieck group of all representations of sp(2m,C), for V = V(1,0,...,0),
we get

V(z,0,...,0) = Sym“V
V(z,1,0,...,0) = Sym"V @ V — Sym“ "'V — Sym“ ™'V
V(z,y,0,...,0) = Sym”V ® Sym?V + Sym”V ® Sym? >V

— Sym” 'V ® Sym? 'V — Sym® "'V @ Sym?"'V.

4 The Littlewood-Richardson rule for Sp(2m)

This idea of using the standard representation as a building block for determining every
irreducible representation can then be expanded to more complicated highest weights, but
more machinery is needed. In [7], Littelmann provides a generalization of the Littlewood-
Richardson rule in the cases of all simple, simply connected algebraic groups of type A,
By, Cm, D, G2, Es, and partial results for Fy, E7, and Es. The main result from [7] is
the following theorem.

Theorem 4.1. The decomposition of the tensor product Vx®V,, into irreducible G-modules
is given by
WWev,= @V)\+U(T)
T

where T runs over all G-standard Young tableaux of shape p(u) that are A-dominant.

Let G = Sp(2m). We will now give a description, tailored to our situation, of the
Sp(2m)-standard Young tableaux of shape p(u) that are A-dominant. We will only need
to consider the case where u = (n,0,...,0).

The Sp(2m)-standard Young tableaux of shape p(n,0,...,0) are all of the Young dia-
grams consisting of a single nondecreasing column of length n containing the integers 1 to
2m.

Define v(T) := (cr(1)—cr(2m))er+(cr(2)—cr(2m—1))ea+. . .+ (cv(m)—cr(m~+1))em,
where cr (i) is equal to the number of times the number i appears in the tableau T.

Let T(I) be the tableau created from T by removing rows [ + 1 to n, counting from
bottom to top. Then an Sp(2m)-standard Young tableau T of shape p(n,0,...,0) is A
dominant if all of the weights A + v(T(1)) are dominant weights for 1 <[ < n.

We can now present the main theorem of this note.

Theorem 4.2. Any irreducible representation V(z1,...,zk,0,...,0) of sp(2m,C) can be
written as an integral combination in the form

SV, 0,...,00@...@V(y",0,...,0) (1)
=1

for some n, ¢;, and y](-i).
Proof. We will use induction on k. The case where &k = 1 is trivial, and the case where
k = 2 is a consequence of Corollary 3.2.

Assume the statement of the theorem is true for k. Now, we will want to show
V(z1,..., Tk, Tkt1,0,...,0) can be written as some integral combination in the form

J

ZciX/(yY),O,...,O) ®...0 V(y,(ﬁl,O, ...,0) for some n, c;, and y'". We will prove
i=1

this assertion by induction on the size of zy41.
When zx41 =0, V(21,..., Tk Tkt1,0,...,0) can be written as some integral combina-
n

tion in the form Z C¢V(y§i), 0,...,0)®...® V(yfﬁ_l,ﬁ ...,0), with y,i?_l = 0 for every 1,

i=1
using the inductive hypothesis for the induction on k.



Assume true for xx+1 < z — 1. Now we want to show V(z1,..., 2k, 2,0,...,0), for any
x; and z such that 1 > ... > xr > 2, can be written as some integral combination in the

form Z ci\/(yii), 0,...,0)®...® V(ykJr17 0,...,0) for some n, ¢;, and y](-i). Consider the

i=1
decomposition of V' (z1,...,z,0,...,0) ® V(z,0,...,0) using Theorem 4.1.

The standard Young tableaux, T, of shape p(z,0,...,0) that are (z1,...,2%,0,...,0)-
dominant are the nondecreasing columns of length z with entries taken from the set of
integers between 1 and k + 1 and integers between 2m + 1 — k and 2m such that the
following inequalities are satisfied for 1 <i < k — 1:

T — cT(2m +1-— Z) > Tit1 (2)
i —er(Cm4+1—14i) > xip1 +er(i+1) —er(2m — 1) (3)
zr—cr(2m+1—k) > cr(k+1) (4)

In the decomposition of V(z1,...,xk,0,...,0)®V(2,0,...,0) using Theorem 4.1, each
irreducible representation has a highest weight

(z1 +er(1) —er(2m), ...,z + cr(k) —er(2m+1—k),cr(k+1),0,...,0)

for some standard Young tableaux, T, of shape p(z,0,...,0), which is (z1,...,2%,0,...,0)-

dominant. All of these highest weights have 0 < c¢r(k + 1) < z — 1 except in the case

where T, a column of length z, contains only entries equal to k + 1 with cr(k 4+ 1) =

z. In this case, the highest weight is (z1,z2,...,%k,2,0,...,0). By induction, every

other irreducible representation in the decomposition, except for V(z1,...,xk, 2,0,...,0),
n

can be written as a some integral combination in the form Zci yi’),(), LR ®

i=1

V(y,(cﬁ)r17 0,...,0). V(xi,...,2x,0,...,0) can be written as some integral combination

in the form ZciV(yy),O, L0 V(yl(:), 0,...,0) by the inductive hypothesis
i=1
for the induction on k, so that V(z1,...,2k,0,...,0) ® V(2,0,...,0) is equivalent to

ch @7,0,...,00®...@V(y",0,...,00® V(2,0...,0).

By isolating V' (z1,...,2k, 2,0,...,0) in the decomposition of V(z1,...,2k,0,...,0) ®
V(z,0,. 0), V(z1,...,2k,2,0,...,0) can now be written as some integral combination

in the form Zcz yll), 0,...,0)®...® V(y,H_17 ,...,0). This completes the induction

on z and thus the induction on k.

O

This proof provides a recursive algorithm for finding the formal combination as in
(1) for any irreducible representation. For example, the first step in determining (1) for
V(z1,...,2k,1,0,...,0) is the following identification:

V(z1,...,2k,1,0,...,0) = V(z1,...,25,0,...,0) ® V(1,0,...,0)
@ V(Z’l,...,$¢+1,..,,1‘k,0,...,0))

Ti—17#T;
i=1,....k

P V@,...,zi—1,...,2x,0,...,0)

TiFTi41
i=1,....k

5 A refinement of the recursive algorithm
For V(x1,...,2k+1,0,...,0), assume z = xp4+1 > 2k and all of the representations of the

form V(z1,...,2k,0,...,0) have known integral combinations in the form of (1). Define
the following algorithm.

10



For x1 # x2, define the representation

F(V(z1,...,2x,0,...,0) ® V(z,0,...,0),2m)
=V(z1,...,2k,0,...,0) ® V(2,0,...,0)
—V(x1—1,...,2,0,...,00 @ V(2 — 1,0,...,0).

If 1 = x2, define the representation
F(V(z1,...,2k,0,...,0) ® V(z,0,...,0),2m)
=V (z1,...,2k,0,...,0) @ V(2,0,...,0).
For x; # xiy1 with2 <i <k —1 or x; > xi+1 with i = k, define the representation
F(V(z1,...,2k,0,...,0) ® V(2,0,...,0),2m + 1 — 1)
= F(V(z1,...,25,0,...,0) ® V(2,0,...,0),2m + 2 — 7)
—F(V(z1,...,2: — 1,...,2,0,...,00 @ V(2 = 1,0,...,0),2m + 2 — 7).
For x; = xiy1, 2 <i < k —1, define the representation
F(V(z1,...,25,0,...,0) @ V(2,0,...,0),2m + 1 — i)
=F\V(z1,...,2,0,...,0) @ V(z,0,...,0),2m + 2 — 7).
For x; # xi—1, 2 <1 < k, define the representation
F(V(z1,...,7k,0,...,0) ® V(z,0,...,0),%)
= F(V(z1,...,2k,0,...,0) ® V(2,0,...,0),i+ 1)
—F(V(z1,...,xzs +1,...,24,0,...,00 @ V(2 = 1,0,...,0),7 + 1).
For x; = x;—1, 2 < i <k, define the representation
F(V(z1,...,25,0,...,0) ® V(z,0,...,0),4)
=F(V(z1,...,25,0,...,0) @ V(2,0,...,0),i+ 1).
Define the representation
F(V(z1,...,25,0,...,0) @ V(2,0,...,0),1)

=F\V(z1,...,2x,0,...,0) ® V(z,0,...,0),2)
~F(V(z1 4+ Las,...,2,0,...,0)® V(2 — 1,0,...,0),2).

Then,
V(zi,...,28,2,0,...,0) = F(V(z1,...,2x,0,...,0) ® V(2,0,...,0),1).

This algorithm produces an integral combination equal to V(z1,...,xx, 2,0,...,0) of
representations of the form V(z!,...,2},0,...,0) ® V(2',0,...,0). Substituting in the
integral combinations in the form of (1) for the representations V (z1, ..., x},0,...,0) yields
the integral combination in the form of (1) for V(z1,..., 2k, 2,0,...,0). The following is

an explanation of how the algorithm works.
Recall that V(z1,...,2%,0,...,0)®V(2,0,...,0) = @V((wh ey Xk, 0,0, 0)+u(T))
T

for all standard Young tableaux, T, of shape p(z,0,...,0) that are (z1,...,2%,0,...,0)-
dominant, which means all single nondecreasing columns, T, of length z containing integers
from the set of integers between 1 and k£ + 1 and integers between 2m + 1 — k and 2m and
satisfying conditions (2), (3), and (4).

If & # wiy1, define a map from the standard Young tableaux, T, of shape p(z —
1,0,...,0) that are (z1,...,2; — 1,...,xk,0,...,0)-dominant and do not contain integers

11



from the set {2m+2—1,...,2m} to the standard Young tableaux, T, of shape p(z,0,...,0)
that are (z1,...,2,0,...,0)-dominant and do not contain integers from the set {2m +
2 —14,...,2m} by sending T to the tableau formed by adding a 2m + 1 — i to the bottom
of the column.

This map is a bijection between all of the T and all of the T containing a 2m + 1 — i,
taking into account the conditions (2), (3), and (4). The map preserves the highest
weights of the representations corresponding to these tableaux in the respective decompo-
sitions V(z1,...,z; — 1,...,24,0,...,0) ® V(2 — 1,0,...,0) and V(z1,...,2£,0,...,0) ®
V(2,0,...,0) using Littelmann’s theorem, Theorem 4.1. For T + T, ¢r(j) = c1.(j) for all
j#2m+1—1i,and ecr(2m+ 1 —1i) = c3(2m + 1 — i) + 1. Therefore,

V(z1 4+ c5(1) —ecsp(2m),...,xs — 1+ cp(i) —cqp(2m+1—19),...,
xr +cp(k) —ecs(2m+1—k),eq(k+1),0,...,0)

=V(z1 +er(l) —er(2m),...,zi + cr(i) —er(2m+1—14),...,
z +er(k) —er(2m+1—k),er(k+1),0,...,0).

For z; # xiy1, when ¢ = 1, the representation

F(V(z1,...,2x,0,...,0) ® V(z,0,...,0),2m)
=V (x1,...,25,0,...,0) ® V(2,0,...,0)
—V(z1—1,...,24,0,...,00 @ V(2 — 1,0,...,0)

and when 2 < ¢ < k — 1, the representation

F(V(z1,...,2k,0,...,0) ® V(2,0,...,0),2m + 1 — i)
=FWV(z1,...,2,0,...,0) ® V(2,0,...,0),2m + 2 — i)
—F(V(z1,...,2zs — 1,...,24,0,...,0) @ V(2 — 1,0,...,0),2m + 2 — 1)

is equivalent to @V((:rl, cos @k, 0,...,0) + v(T)) for all standard Young tableaux of
T
shape p(z,0,...,0) that are (z1,...,2%,0,...,0)-dominant and do not contain any integer
from the set {2m +1 —4,...,2m}.
For x; = x;+1, when i = 1, the representation

F(V(z1,...,25,0,...,0) ® V(2,0,...,0),2m) := V(z1,...,2,0,...,0) @ V(2,0,...,0)
and when 2 < i < k — 1, the representation

F(V(z1,...,2x,0,...,0) @ V(2,0,...,0),2m + 1 — i)
=F\V(z1,...,2,0,...,0) ® V(2,0,...,0),2m + 2 — 1)

is equivalent to @V((ml, ces T, 0,...,0) + v(T)) for all standard Young tableaux of
T
shape p(z,0,...,0) that are (z1,...,2k,0,...,0)-dominant and do not contain any integer
from the set {2m + 1 —4,...,2m}.
For i = k, it is only important that xx > z, which is true for any highest weight. The
representation

F(V(z1,...,2,0,...,0) @ V(z,0,...,0),2m+ 1 — k)
=F\V(z1,...,75,0,...,0) ® V(2,0,...,0),2m + 2 — k)
—F(V(z1,...,26 — 1,0,...,0)® V(2 — 1,0,...,0),2m + 2 — k)

is equivalent to @V((ml, ce s T, 0,...,0) + v(T)) for all standard Young tableaux of
T

shape p(z,0,...,0) that are (z1,...,2k,0,...,0)-dominant and do not contain any integer

from the set {2m + 1 —k,...,2m}.
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The standard Young tableaux of shape p(z,0,...,0) that are (z1,...,2#,0,...,0)-
dominant and do not contain any integer from the set {2m + 1 — k,...,2m} will only
contain integers from the set {1,...,k + 1}. Note that if T does not contain an integer i,
this is the same as saying cr(i) = 0.

For z; # x;—1, define a map from the standard Young tableaux, T, of shape p(z —

1,0,...,0) that are (z1,...,2; + 1,...,2%,0,...,0)-dominant and only contain integers
from the set {1,...,4,k+1} to the standard Young tableaux, T, of shape p(z,0,...,0) that
are (z1,... y Ty 0, ,0)-dominant and only contain integers from the set {1,...,4,k+ 1}

by sending T to the tableau formed by adding an ¢ to the column.

This map is a bijection between all of the T and all of the T containing an 7, taking into
account the conditions (2), (3), and (4). The map preserves the highest weights of the repre-
sentations corresponding to these tableaux in the respective decompositions V' (z1,...,z; +
1,...,2x,0,...,0) ® V(2 — 1,0,...,0) and V(21,...,2%,0,...,0) ® V(2,0,...,0) using
Littelmann’s theorem, Theorem 4.1. For T — T, cr(j) = cg(j) for all j # ¢, and
cr (i) = ¢4 (3) + 1. Therefore,

V(zr +c4+(1) —cs(2m),...,xi + 1+ cp(t) —cp(@m+1—14),...,
i + ci(k) —cs(2m+1—k),cp(k +1),0,...,0)
=V(z1+er(l) —er(2m),...,zi + cr(i) —er(2m+1—14),.. .,
zr +er(k) —er(2m+1—k),er(k+1),0,...,0).

For x; # x;_1, when ¢ = k, the representation

F(V(z1,...,28,0,...,0) ® V(2,0,...,0),k)
=V (z1,...,25,0,...,0) ® V(2,0,...,0)
—V(z1,...,2, +1,0,...,00) @ V(2 — 1,0,...,0)

and when 2 < i < k — 1, the representation

F(V(z1,...,2k,0,...,0) @ V(z,0,...,0),%)
=FWV(z1,...,2,0,...,0) ® V(2,0,...,0),i+ 1)
—F(V(z1,...,z:+1,...,2,,0,...,00 @ V(2 — 1,0,...,0),i + 1)
is equivalent to @V((zl, .oy Tk, 0,...,0) + v(T)) for all standard Young tableaux of

T
shape p(z,0,...,0) that are (z1,...,%k,0,...,0)-dominant and only contain integers from

the set {1,...,i—1,k+ 1}.
For x; = x;—1, when ¢ = k, the representation
F(V(z1,...,25,0,...,0) ® V(2,0,...,0),k)
=F(\V(z1,...,25,0,...,0) ® V(2,0,...,0),2m + 1 — k)

and when 2 < i < k — 1, the representation

F(V(z1,...,2x,0,...,0) ® V(z,0,...,0),4)
=F(\V(x1,...,75,0,...,0) ® V(2,0,...,0),i + 1)
is equivalent to @V((wl, .o, Tk, 0,...,0) + v(T)) for all standard Young tableaux of

T
shape p(z,0,...,0) that are (z1,...,2k,0,...,0)-dominant and only contain integers from

the set {1,...,i—1,k+ 1}.
For 7 = 1, there are no restrictions on the number of times 1 appears in a tableau (other
than the size of the tableau), the representation
F(V(z1,...,25,0,...,0) @ V(2,0,...,0),1)
=F\V(z1,...,7,0,...,0) ® V(z,0,...,0),2)
—F(V(z1+1,22,...,2,0,...,00) @ V(2 — 1,0,...,0),2)
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is equivalent to EB V((z1,...,2x,0,...,0)4v(T)) for all standard Young tableaux of shape
T
p(z,0,...,0) that are (z1,...,2%,0,...,0)-dominant and only contain integers from the set

{k + 1}. The only tableau satisfying these conditions is the single column containing only
k+1s. This tableau corresponds to the representation V(x1,...,zk, 2,0, ...,0). Therefore,

V(z1,..., 2k, 2,0,...,0) = F(V(z1,...,2k,0,...,0) ® V(z,0,...,0),1),

which is an integral combination of representations of the form V(y1,...,9%,0,...,0) ®
V(z —14,0,...,0) for some y; and i. Substituting in the integral combinations for all of
the V(y1,...,yx,0,...,0) yields the integral combination of V(z1,...,zk,2,0,...,0) =
V(x1,..., Tk, Tkt1,0,...,0) in the form of (1).

This algorithm can also be used when z < 2k. It can be applied until the size of z
is exhausted, thus simplifying the problem of determining the integral combination to a
reduced number of tableaux. If there are some equal terms, x; = z;41, the algorithm may
be completed for some z < 2k.

This algorithm also produces the following formula.

Proposition 5.1. For any irreducible representation of sp(2m,C) with highest weight
(z1,...,%k,2,0,...,0), such that x; > ;41 +2 when 1 <i<k—1 and z > 2k,

V(zi,..., 2k, 2,0,...,0)
= Y (=) (V(@1 — i1+ ji, @2 —d2 + o, .. Tk — ik + i, 0, ,0)

i1,..,1,€{0,1}
J1se-Jk€40,1}

@V(z—i—3,0,...,0))

fori=di1+.. g and j =41+ ...7k

6 Examples

For any irreducible representation of sp(4,C) and V = V(1,0), its formal combination is
determined by

V(z,0) = Sym”V x>0
V(z,1) = Sym"V @ V — Sym* "'V — Sym® 'V z>1
V(z,y) = Sym”V ® Sym?V + Sym“V ® Sym? >V z>y>2

— Sym” ™'V @ Sym? "'V — Sym“ "'V @ Sym?"'V.

To apply the refinement of the recursive algorithm to the case of sp(4,C) and some
V(x,y) such that y > 2, we do the following.

F(V(z,0) ® V(y,0),4) = V(2,0) @ V(y,0) = V(z — 1,0) ® V(y — 1,0).
F(V(z,0) ® V(y,0),1) = F(V(2,0) ® V(y,0),4) — F(V(z+ 1,0) ® V(y — 1,0),4)
and
FV(z+1,009V(y—1,0),4) =V(z+ 1,00 V(y—1,0) — V(2,0) @ V(y — 2,0).
Therefore,

F(V(z,0)®V(y,0),1)

=V(z,0)®@V(y,0) —V(z—1,00)® V(y — 1,0)
—(V(E+1,00V(y—1,0)—V(z,0) ® V(y —2,0))

=V(z,0) @ V(y,0) = V(z—1,0) ® V(y — 1,0)
—V(z+1,00@V(y—1,0)+ V(z,0) @ V(y — 2,0).
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and

Viz,y)

= F(V(z,0) ® V(y,0),1)

=V(z,0)® V(y,0) = V(z—1,0) @ V(y — 1,0)
—V(+1,00V(y—1,0)+V(z,0) @ V(y — 2,0).

Equivalently,

Vig,y)= D> ()"V(@-i+50)@V(y—i-j0).
i,7€{0,1}
For any irreducible representation of sp(6,C) with highest weight (x,y,0), its formal

combination is determined similarly as above. For V(z,y, z) such that x > y+2 and z > 4,
the refinement to the recursive algorithm produces the following output:

V(z,y,z) =V(z,y,0) ® V(z,0,0) V(z—-1,4,00®V(z—1,0,0)
—V(z,y—1,0)® V(2 — 1,0,0) V(z—1,9—1,00® V(2 — 2,0,0)
V(my-i—l 0)® V(z —1,0,0) V(e —1,y+1,0)®V(z—2,0,0)

+V(2,9,0) ® V(2 — 2,0,0) V(z—1,y,0)® V(z —3,0,0)
V(ac+1 ¥,0) @ V(2 —1,0,0) V(z,y,0) ® V(2 —2,0,0)

Viz+1l,y—1,00@V(z—2,0,0) — V(my710)®V( —3,0,0)
V(z+ 1,941,000 V(z—2,0,0)— V(z,y +1,0)® V(z — 3,0,0)
V(z+1,y,00® V(2 —3,0,0) +V(z,y,0) @ V(2 —4,0,0).

This is equivalent to

Vg,y,2)= > (=)™ V(e =i+ 1,y —iz+52,0) @ V(2 —i—j,0,0)
i1,i2€{0,1}
J1,32€{0,1}
where ¢ = 41 + i2 and j = j1 + ja.
Substituting in for the irreducible representations with highest weights (z’,y’,0) and
simplifying, this becomes

V(z,y,2) = Z Sgn<|l0| \l1| |l2‘>V(m+l1,0,0)®V(y+lz—1,0,0)
11,012,136 {0,£1,£2} to R
{ltal:1221,113]}={0,1,2}

&V (z+1s — 2,0,0).

7 A general formula

Now, we will expand the formula explicitly calculated in Section 6 for V(z,y, z), such that
x> y—+2and z > 4, to a general case for representations in sp(2m, C) with highest weight
vectors of sufficient size.

Theorem 7.1. For any irreducible representation of sp(2m,C), V(x1,...,2x,0,...,0),
such that ©; > xiy1 +2(k—1—14) when 1 <i<k—1 and z; > 2k — 2,

V(ml,...7xk70,...70)
k

0 1 ...
= > Sgn(\m | ... |lk|)® (@n +1n = (n = 1),0,...,0).

Iy, €{0,£1,..., 2 (k=1)} n=1
{lial,-s e 13={0,1,....k—1}
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Proof. We will argue by induction on k. The case when k = 1 is trivial. When k£ = 2 and
92 Z 2,

V(ml,a:g,(),.‘.,o)
- Z (-1)"V(x1 —i44,0,...,0) @ V(za —i—34,0,...,0)

i,7€{0,1}

- Z sgn<|lo‘ |l1|>V(m1+l1,0,...,0)®V(x2+l2—1,0,...,0).
l1,l2,€{0,£1} ! 2
{Ital,ll2]}={0,1}

Assume the statement of the theorem for k. Let zp+1 = z, we want to show

V(z1,...,2k,2,0,...,0)

0 1 koY e
_ b
= Z Sgn(\l/ﬂ 1A )gV(mn+ln (n—1),0,...,0)

|V 1]
Useelpy 1 €40,£1,. £ (k)} +
{‘l/1|a-~:|l;¢+1|}:{071w~,k}

for ¢; > w41 +2(k—1i) when 1 <i < k and z > 2k. Call this sum S’. The tensor products

in this sum are indexed by a k-tuple, (I1,..., 0 1)-
From Proposition 5.1,

V(zi,..., 2k, 2,0,...,0)
= Z (=) (V(z1 — i1 + j1, w2 — da + ja, ..., Tk — ik + i, 0,...,0)
il,A..,ikE{O,l}
J1se-3k €{0,1}
@V(z—i-—j0,...,0)).
Applying the inductive hypothesis to V(z1 — 41 + j1,...,Zk — ik + jk,0,...,0) yields the

following,

V(zi,..., 2k, 2,0,...,0)

_ Cayit 0 1 .. k=1
= > (1) sgn(\m ol oo |l
i1reenrin€{0,13 1o lg €{0, £ 1, £ (k—1)}
J1,--3k€40,1} {Ita ], |k |}={0,1,....k—1}

(QV(@n —in +jn +1ln — (n—1),0,...,0)) @ V(z —i — 4,0,...,0).

n=1

Call this sum S. The tensor products in this sum are indexed by three k-tuples of the

1 1k
form |j1 ... jr]. For a given (I1,...,l,41), we will show that there is exactly one
oo Ik
1 ... ik
j1 ... Jjk | such that, for 1 <n <k,
oo ke
T —in+jn+ln—(n—1) =z, +10, —(n—1)
and
it 0 1 .o k=1 0 1 oo k=1 k
—1)"*sgn = sgn )
o ) =G S e
11 ... 1k
We will now give an explicit description of how to calculate this | j1 ... jr | from
ook

(14, ..., lxt1), and with some thought, it is easy enough to see that this is the only way to
choose the proper index.
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i1 ... Ik

For a particular (I1,...,l;41), choose | j1 ... ji | in the following way. If I, = k,
Lo g
0o ... 0
theni+j = 0 and isequalto [ 0 ... 0. Ifl,,, = —k, theni+j =2k
A 4
1 ... 1
and ]1 isequal to [ 1 ... 1 |. If|lj| = k for s # k + 1, take i5s = 1,
I 4
jgf() andlg:— —1)ifl, = —k and take is = 0, js = 1, and Is = k — 1 if I, = k.

Next consider |I.| = k — 1 and if r # k+ 1 take ¢, = 1, jr = 0, and [, = —(k — 2) if
I, = —(k—1) and take i, =0, j» = 1, and I, = k — 2 if I, = k — 1. Continue with this
1 ... Ok
process until |}, ;| = k — ¢ for some 0 < t < k. For the other entries in | j1 ... J& |,
i ... Ik
take lo = I, and take i = 0 and jo = 0if I}, =k — ¢ > 0 and take i(qc = 1 and j, = 1 if
liq1 = —(k—1) < 0. Note that if I, = 0, all of the entries have already been determined

by the earlier process. Now for a particular element in S’ indexed by (I1,...,l; 1), we
11 ... Tk
have the same element appearing in S indexed by the corresponding | j1 ... Jjr | and

lh oo g
with the same sign attached.
The symmetric group on k letters acts on the elements of S by permuting the columns

... ik ... ik
of the index of an element, [ j1 ... jx|. Each |j1 ... jx | that corresonds to an
oo g IR 8

element in S’ as described above is the result of a permutation applied to one of four types.
These four types are indexed by the following.

0 O 0
nlo o ... 0
0 +1 ... +(k-1)
0 0 Tn ik
2){0 ... 0 n Jk for some 1 < n < k and with ¢, =
0 ... #(n—2) +(n—-1) ... +(k-1)

0,jr=1forl, =r—1and i, =1,jr =0 for [, = —(r — 1) for n < r < k. Note that when
n =1, either 44 =0 and j1 =1 or 43 =1 and j; =0.

1 1 1
1 1. 1
0 +1 ... *(k-1)
1 1 in ik
4Hl11 ... 1 Jn Ik for some 1 < n < k and with 4, =
0 ... £n—2) £(n-1) ... £(k-1)
0,5, =1forl, =r—1landi, =1,5, =0forl, = —(r — 1) for n <7 < k. When n =1,

this coincides with the second type for n = 1.

Now we will prove by induction on k that S = S’ by showing that S = S; + Sa, where
S is a subsum containing only those elements corresponding to elements in the sum S,
in other words S; is equal to the sum of all of the elements indexed by permutations of
the four types of indices listed above, and So = S — S1 = 0. The case where k = 1 was
shown earlier. In this case every term in S corresponded to a term in S’ and there was no
cancellation, so that Se = 0 trivially. The case where k = 2 was also explicitly calculated.
Assume S = S1 + 55 such that S;1 = 5" and So =5 —S1 =0 for k—1 and take & > 2. We
want to show S = S; + Sz such that S; = S’ and S2 = S — S; =0 for k.

1 ... 1k
Consider all | j1 ... jr | with a fixed I, = £(k — 1) and fixed 4, and j.. Consider
L. g
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the following subsum contained in S,

I
ST7711T7]7")
]

it 0 1 ... k-1
— —1)"sgn
(X > (=1 g(\m N |zk|)
1tk €{0,1) Liselye [ €40,£ 1,0+ (k—2)}
F1seosdrs e dk €401 {|T1]see | U] yeems |l | }={0,1,...,k—2}

k
®V(:cn—in—l—jn—l—ln—(n—l),O,...70)®V(z—(i+j),0,‘..70))
At
®V(-Tr_7:r+jr+lr—(7’—1),0,...70).

This sum is equal to

(_1)(k—r)(_1)(ir+m( Z Z (—1)iti—ir=ir

il,.“,i},...,ike{o,l} l1,.,.,l;,4;.,lke{o,il,.,.,i(k72)}
15 sdrsdk €L0,1Y {11 |5 |l |se o [l | }={0,1,...,k—2}

0o 1 ... k—2> k

sgn - V(Zn — tn + jn +1ln — (n—1),0,...,0)
<|ll\ Y N 8 I | 74 g
n#r

®V((z—ir—jr)—(i—i—j—ir—jr),o,...,())) @V (2r —ir+jr + 1 — (r—1),0,...,0)
= (- (=) RY @ V(wy —ir + jir + b — (r — 1),0,...,0).

The sum R is equal to

Z Z (_1)i+j*ir*jr

P1yeeeyipyensin €40,1} I1yeey byl €{0,%1,...,£(k—2)}

G1seedrse o d €01 {[11 vy ) U hee o | Ui | 3={0,1,..., k—2}
0o 1 ... k=2 &
sgn ~ V(zp, —tn+jn+1ln—(n—1),0,...,0
& <|zl| S T R A )@ ( ! (=) )
n#r

@V((z—ir—jr) — (47 —ir—jr),0,...,0).

Apply the inductive hypothesis to R. By the inductive hypothesis for k — 1, R is equal
to R1 + Rz such that R; contains a sum of elements indexed by permutations (from the
symmetric group on {1,...,7 — 1,7+ 1,...,k}) of the four special types, with the r-th
column removed, and Ry = R — Ry = 0. Therefore, R = R;.

Now

b ..
S(T, m,lmjr)

(71)<k7’r‘)(71)(7«r+]'r)(R) ® V(mr — iy +]7‘ + 1 — (’r’ — 1), 0, ceey 0)
(—)F (=) (R @ V(e — iy 4 jr + L — (r — 1),0,...,0)

" 0 1 ... k-1
—1)H7
( DI Sgn(w | ... |zk|)
i1 ... dp
<j1-~~jk>
I
k
®V(xn—in—i—jn—l—ln—(n—1),0,...,O)®V(z—(i—l—j),O,...,O))
nar
Q@ V(zr —ir + jr+ 1l — (r—1),0,...,0)
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i1 ... ik

for all | j1 ... jr | with the fixed r-th column and the rest of the matrix equal to a
lh ... Ik

permutation (from the symmetric group on {1,...,7r — 1,74+ 1,...,k}) of one of the four

types.

S: Z S(r7€77;7“7j7”)
re{l,....k}
ec{—1,+1}
ir,jr€{0,1}

for the subsums S(r, €, ir, jr), and all of these have been reduced by the inductive hypoth-
esis.
We will show that for the remaining elements in the subsum Sy = S — 51, which

have not been cancelled out by the application of the inductive hypothesis, there is a
well-defined pairing of elements into disjoint pairs such that the sum of the elements in

a pair is equal to zero. Notice that two indices |51 ... jx | and [41 ... jr | wil
ook A 4

correspond to elements that will sum to zero if —(i1,...,ik) + (J1,..-,J%) + (L, ..., k) =

—(i, i)+, g+, -, 1), i+ = 7' 457, and the signs associated to (11, ...,k

and (11,...,1;) are different.

Define the set M to be the elements in the reduced S2 = S — S;. This means all of the

11 e 1k

elements indexed by a matrix M = | j1 ... Jji | such that if the [, = £k — 1, then M
Lo g

is not a permutation of one of the four special types of indices but with the r-th column
removed it is a permutation of one of the four special types of indices (for k — 1). This
means any M is a permutation of one of the following.

0o 0 ... 0 ik
nH{o o ... 0 Jk . The last two columns are equal to one of the
0 +£1 ... £(k-2) *(k-1)
0 1 0 0 0 1
following 0 0 , 0 1 , or 0 1
+k-2) (k-1) +(k-2) —(k-1) +(k—-2) £(k-1)
0 ... 0 In ... Th—1 Tk
2) (o ... 0 Jn Jk—1 Jk for some 1 < n < k-1
0 ... £(n—-2) £(n-1) ... £(k-1) £(k-1)
and with i, = 0,j, = 1forl, =r—1and i, = 1,5, =0for i, = —(r — 1) for n < r <
1 0 1 1
k — 1. The last two columns are equal to 0 0 , 0 0 ,
—(k—2) £(k-1) —(k—=2) (k-1)
1 0 1 1 0 0
0 1 , 0 1 , 1 0 ,
—(k-=2) —(k-1) —(k—=2) £(k-1) (k—=2) £(k-1)
0 1 0 0 0 1
1 0 , 1 1 , or 1 1
(k=2) (k-1 (k—=2) —(k-1) (k—2) £(k-1)
1 1 ... 1 ik
31 1 ... 1 Jk . The last two columns are equal to one of the
0 1 ... x(k-2) £(k-1)
1 1 1 0 1 0
following, 1 0 , 1 1 , Or 1 0
+(k-2) (k—1) +(k-2) —(k-1) +(k-2) £(k-1)
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1 ... 1 in Th—1 ik

49H) (1 ... 1 Jn Jr—1 Ik for some 1 <n < k-1
0 ... £n—=2) £(n-1) ... x(k-1) =£(k-1)
and with i, = 0,5, =1forl, =r—1and i =1,5, =0for I, = —(r — 1) forn < r <
1 0 1 1
k — 1. The last two columns are equal to 0 0 , 0 0 ,
—(k-=2) £(k-1) —(k-=2) (k-1
1 0 1 1 0 0
0 1 , 0 1 , 1 0 ,
—(k-2) —(k-1) —(k-=2) £(k-1) (k=2) =£(k-1)
0 1 0 0 0 1
1 0 , 1 1 , or 1 1
(k=2) (k-1 (k—=2) —(k—-1) (k—2) +(k-1)
Now define a function Z : M — M. We will define it for elements with these four

types of indices in terms of their indices. Then the definition for any other element can
be found by endowing = with the property that Z(c M) = ¢=Z(M) for any o € Si and any
index M of an element in M. E is now defined for all elements in M because any index
of an element can be found as a permutation of one of these four types of indices.
0o 0 ... 0 ik
1) Given indices of the form [0 0 ... 0 Ik , define = in the follow-
0 +1 ... +(k-2) +(k-1)
ing way.

o 0 ... 0 1 0 0 1 0
o 0 ... 0 0 — 0 0 0 0
0 £1 ... (k—=2) (k—1) 0 =1 (k—=1) (k-2
0 0 0 1 0 O 0 0
0 0 0 0 — 0 0 1 0
0 +1 —(k-2) (k-1) 0 %1 —(k—1) (k-2
0 0 0 0 0 0 1 0
o 0 ... 0 1 — 0 0 0 0
0 1 ... (k=2 —(k-1) 0 =1 (k—1) —(k—2)
0 0 0 0 0 0 0
0 0 0 1 — 0 O 1 0
0 +1 —(k-2) —(k-1) 0 +1 —(k—-1) —(k-2)
0 0 0 1 0 0 1 0
0 0 0 1 — 0 0 0 1
0 +1 (k—2) (k—1) 0 +1 (k—1) (k—2)
0 0 0 1 0 0 0 0
0 O 0 1 — 0 0 1 1
0 =1 —(k—=2) (k—1) 0 =1 —(k-1) (k—2)
0 O 0 1 0 O 1 1
0 O 0 1 — 0 0 0 0
0 +1 (k—2) —(k—1) 0 %1 (k—1) —(k-2)
0 0 0 1 0 0 0 1
0 O 0 1 — 0 0 1 0
0 1 ... —(k—-2) —(k-1) 0 =1 —(k—-1) —(k—2)
0 .. 0 in . Th—1 ik
2) Given indices of the form (0 ... 0 Jn .. Je—1 Ik
0 ... £(n—2) £(n-1) ... £(k-1) *(k-1)

for some 1 < n < k—1 and with ¢ =0,j, = 1forl, =r —1and i, = 1,5, = 0 for
lr =—(r—1) for n <r <k —1, define the = in the following way.
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1 0 0 0
0 0 — 0 1
—(k—=2) (k—1) o —(k=1) (kE—-2)
1 0 0 1
0 0 — 0 0
( ~(k-2) (kn) ( ~(k-1) <k2>>
1 1 1 0
0 1 — 1 1
—(k=2) (k-1) o —(k=1) (k—2)
1 1 1 1
— 1
—(k—=2) —(k-1) e —(k=1) —(k-2)
0 0 ... 0 0
1 0 — . 0 1
( (k- 2) (k—l)) ( (k- 1) (k—?))
0 0 .. 0 1
1 0 — .. 0 0
(k—=2) —(k—-1) e (k=1 —(kE-2)
0 1 o 1 0
1 1 — . 1 1
oo (B=2) (E-1) o (B=1) (k-2)
0 1 1 1
1 1 — 1 0
oo (k=2) —(k-1) oo (B=1) —(k-2)
When n = k — 1, define = in the following way.
1 1 1 0
0 0 > 1 0
( ~(k-2) (kn) ( ~(k-1) <k2>>
1 0 1 0
0 1 — 1 0
—(k—=2) —(k-1) e —(k=1) —(k-2)
0 1 1 0
1 0 — 1 0
( (k- 2) (k—l)) ( (k- 1) (k—2)>

When n > k — 1, either i5_2 = 1, jy—2 =0, and ly_2 = —(k —3) or ix—2 =0, jr—2 = 1,
and l_2 = k — 3. Define = in the following way.
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1 1
0 0
o —(k=3) ... (k—1)

| RN

G N R NN
) 5 o)
)

0 0 1 1
1 1 — 0
o (k=3) ... —(k-1) oo (k=1 ... —(k-=3)
1 0 0 1
0 1 — 1 0
oo —(k=3) ... —(k-1) oo —(k=1) ... —(k-3)
1 1 1 ik
3) Given indices of the form (1 1 ... 1 Ik ) , define = in the follow-
0 £1 ... £(k-2) *(k-1)
ing way.
1 1 1 1 1 1 1 1
1 1 1 0 — 1 1 0 1
0 =1 (k=2) (k-1 0 =1 (k=1) (k-2)
1 1 1 1 1 1 0 1
1 1 1 0 — 1 1 1 1
0 =1 —(k-=2) (k-1 0 =1 —(k-1) (k—-2)
1 1 1 0 1 1 1 1
1 1 1 1 — 1 1 0 1
0 =1 (k—=2) —(k-1) 0 =1 (k=1) —(k-2)
1 1 1 0 1 1 1
1 1 1 1 — 1 1 1 1
0 =+1 —(k-2) —(k-1) 0 =1 —(k—-1) —(k-2)
1 1 1 0 1 1 1 0
1 1 1 0 — 1 1 0 1
0 +£1 (k=2) (k-1 0 +1 (k=1 (k—-2)
1 1 1 0 1 1 0 0
1 1 1 0 — 1 1 1 1
0 =1 —(k-=2) (k-1) 0 =1 —(k-1) (k-2)
1 1 1 0 1 1 1 1
1 1 1 0 — 1 1 0 0
0 +1 (k=2) —(k—-1) 0 +1 (k=1 —(k—-2)
1 1 ... 1 0 1 1 0 1
1 1 ... 1 0 — 1 1 ... 1 0
0 1 ... —(k—-2) —(k-1) 0 1 ... —(k-=1) —(k-2)

—
—_
~

3

Tg—1 ik
4) Given indices of the form | 1 . ... Jr—1 Jk )
0 ... £(h—2) +(n—1) ... +(k-1) (k-1
for some 1 < n < k—1 and with ¢ = 0,j, =1 forl, =r —1 and i, = 1,5, = 0 for
lr=—(r—1) forn <r < k-1, define E in the following way.

—_
.
3
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1 0 0 0
0 0 — 0 1
—(k—=2) (k—1) o —(k=1) (kE—-2)
1 0 0 1
0 0 — 0 0
( ~(k-2) (kn) ( ~(k-1) <k2>>
1 1 1 0
0 1 — 1 1
—(k=2) (k-1) o —(k=1) (k—2)
1 1 1 1
— 1
—(k—=2) —(k-1) e —(k=1) —(k-2)
0 0 .. 0 0
1 0 — . 0 1
( (k- 2) (k—l)) ( (k- 1) (k—?))
0 0 .. 0 1
1 0 — .. 0 0
(k—=2) —(k—-1) e (k=1 —(kE-2)
0 1 o 1 0
1 1 — . 1 1
oo (B=2) (E-1) o (B=1) (k-2)
0 1 1 1
1 1 — 1 0
oo (k=2) —(k-1) oo (B=1) —(k-2)
When n = k — 1, define = in the following way.
1 1 0 1
0 0 > 0 1
( ~(k-2) (kl)) ( ~(k-1) <k2>>
1 0 0 1
0 1 — 0 1
—(k—=2) —(k-1) e —(k=1) —(k-2)
0 1 0 1
1 0 — 0 1
( (k- 2) (k—l)) ( (k- 1) (k—2)>
0 0 0 1
1 1 — 0 1
o (B=2) —(k-1) e (k=1 —(k-2)

When n > k — 1, either i5_2 = 1, jy—2 =0, and lgy_2 = —(k —3) or ix—2 =0, jr—2 = 1,
and lr_2 = k — 3. Define = in the following way.
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=
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—
=
| © =
—
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—
=
| — O
w
=

0 0 1 1
1 1 — 0 0
(k—=13) —(k-1) (k—=1) —(k=13)
1 0 1
0 1 — 1
—(k=3) ... —(k-1) oo —(k=1) ... —(k=3)

= is well-defined because it sends any element in M to another such element. This
is obviously true for the elements with the particular indices = was explicitly defined
for, and since M is invariant under Sk, this is true for all elements in M. It is also
easy enough to verify that =2 = Id. Let [M] be the element indexed by the matrix
M, and let sgn(M) be the sign associated to that element. Then Sy = Z [M]. Also,

MeM

{M € M|sgn(M) = 1}| = {M € M|sgn(M) = —1}| and sgn(E(M)) = —sgn(M).
Therefore Z is a bijection between {M € M |sgn(M) =1} and {M € M |sgn(M) = —1}.

S= S M+ Y EM= Y (M +EMD)
MeM MeM MeM
sgn(M)=1 sgn(M)=1 sgn(M)=1
We claim that [M] + [E(M)] = 0 for every M € M. Again, we only need to consider
M as one of the four special types because for any other index oM for some o € S} will
have [oM] + [E(eM)] = [oM] + [0Z(M)] = o([M] + [E(M)]) = o(0) = 0.
To see [M] + [E(M)] = 0 for some M that is one of the four special types, it is enough

1 . 1k
to show M and Z(M) satisfy the three necessary conditions. For M = |j1 ... J&
b oo e
s
and 2(M) = |ji ... Ji|, it is an easy calculation to check

Lo L
—(i1y e yin) 4+ Gy di) + (e ) = =01,y ik) + (s dk) + (0 1)

Also, Z(M) does not change the number of entries equal to 1 in the i, and js slots for M.
Therefore i + j = i’ + j'. Also, Z(M) involves a transposition of (I1,...,lx), so the signs
associated to the elements are different.

Therefore, S = Z 0 = 0. This completes the proof.

MeMm
sgn(M)=1
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