Week 3 worksheet solutions

1. Let $L : P_1 \to P_2$ be a linear transformation for which we know that $L(t + 1) = t^2 + t - 2$ and $L(t - 1) = t^2 - t - 1$. Find $L(6t - 4)$.

Note that $\{t + 1, t - 1\}$ is a basis for P_1, and that

$$6t - 4 = 1(t + 1) + 5(t - 1).$$

It follows that

$$L(6t - 4) = L((t + 1) + 5(t - 1)) = L(t + 1) + 5L(t - 1) = (t^2 + t - 2) + 5(t^2 - t - 1) = 6t^2 - 4t - 7.$$

2. (a) Find the standard matrix representing the linear transformation $L : \mathbb{R}^3 \to \mathbb{R}^4$ where

$$L \left(\begin{bmatrix} a \\ b \\ c \end{bmatrix} \right) = \begin{bmatrix} a - b \\ a + c \\ b + c \\ b - a \end{bmatrix}.$$

We apply the map to the standard basis vectors, obtaining

$$L \left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ 1 \\ 0 \\ -1 \end{bmatrix}, L \left(\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} -1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, L \left(\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}.$$

It follows that the standard matrix representation for L is given by

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 1 & 0 \end{bmatrix}.$$

(b) Find a set of vectors spanning the kernel of L.

We solve the matrix equation $Ax = 0$, which turns into the following augmented matrix and reduces as shown:

$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ -1 & 1 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$
This corresponds to the system \(a - b = 0, \ b + c = 0 \), which has general solution
\[
\begin{bmatrix}
 a \\
 b \\
 c \\
 d
\end{bmatrix} = \begin{bmatrix} -r \\ -r \\ r \\ -r \end{bmatrix} = r \begin{bmatrix} -1 \\ -1 \\ 1 \\ 1 \end{bmatrix}.
\]
This last vector, therefore, spans the kernel of \(L \).

(c) Find a set of vectors spanning the image of \(L \).

Because the linear map is just matrix multiplication, we may use the fact that the columns of \(A \) span its image. Thus a spanning set is given by
\[
\left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} \right\}.
\]

3. Define a linear transformation \(L : M_{22} \to P_2 \) by
\[
L \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = (a + b + d)t^2 + (b - c)t + (c - d).
\]

(a) Find a set of vectors spanning the kernel of \(L \).

If the output of \(L \) is zero, then the coefficients are all zero. This leads to the linear system
\[
a + b + d = 0, \ b - c = 0, \ c - d = 0,
\]
which has general solution
\[
d = r, \ c = r, \ b = r, \ a = -2r.
\]
Thus the kernel is
\[
\left\{ \begin{bmatrix} -2r \\ r \\ r \end{bmatrix} \right\} = \text{span}\left\{ \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix} \right\}.
\]

(b) Find a set of vectors spanning the image of \(L \).

A typical image vector is of the form
\[
(a + b + d)t^2 + (b - c)t + (c - d) = a(t^2) + b(t^2 + t) + c(-t + 1) + d(t^2 - 1),
\]
so that a spanning set for the image is given by
\[
\{ t^2, t^2 + 1, 1 - t, t^2 - 1 \}.\]
4. Verify the matrix version of the rank-nullity theorem for the following matrix:

\[
A = \begin{bmatrix}
1 & 2 & 1 & 2 & 1 \\
1 & 2 & 2 & 1 & 2 \\
2 & 4 & 3 & 3 & 3 \\
0 & 0 & 1 & -1 & -1
\end{bmatrix}
\]

We need to find the nullity of \(A \) (i.e., the dimension of the kernel of the corresponding linear map) and the rank of \(A \) (i.e., the dimension of the image of the corresponding linear map) and make sure they add up to five (the number of columns of \(A \), or the dimension of the domain of the corresponding linear map).

Just as in problem #2, the columns of \(A \) form a spanning set for the image. To find dimension, we need to reduce this spanning set to a basis. To this end we row reduce the matrix \(A \) down to:

\[
\begin{bmatrix}
1 & 2 & 1 & 2 & 1 \\
0 & 0 & 1 & -1 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

The first, third, and fifth columns contain the leading terms, so the first, third, and fifth vectors form a basis. In particular, the dimension of the image is three.

For the kernel, we again row reduce \(A \) (but with a column of zeros adjoined to it) just as before. The system we end up with is:

\[
a + 2b + c + 2d + e = 0, \quad c - d + e = 0, \quad e = 0.
\]

Thus the kernel is:

\[
\begin{bmatrix}
-2s - 3r \\
s \\
r \\
0
\end{bmatrix} = \text{span} \begin{bmatrix}
-2 \\
1 \\
0 \\
0
\end{bmatrix}, \begin{bmatrix}
-3 \\
0 \\
1 \\
0
\end{bmatrix}.
\]

Normally, we would again have to find a basis inside this spanning set, but, because it’s only two vectors, it’s easy to see that they are linearly independent (they are not multiples of one another). Thus this is a basis. In particular the dimension of the kernel is two. Three plus two is five, as required.

5. Let \(L : V \to \mathbb{R}^5 \) be a linear transformation.

(a) If \(L \) is one-to-one and \(\dim(\text{Im } L) = 3 \), what is \(\dim(V) \)?

Three (one-to-one implies no dimensions die, so ending with three implies we began with three).
(b) If $\dim(V) = 3$ and $\dim(\ker L) = 1$, what is $\dim(\text{Im } L)$?

Two (we begin with three dimensions, and one dies, so we’re left with two).

(c) If L is onto, what can we say about $\dim(V)$?

$\dim(V) \geq 5$ (the number of dimensions that survive is five, so there must have been at least five to start with).

(d) If L is one-to-one, what can we say about $\dim(V)$?

$\dim(V) \leq 5$ (no dimensions die, and yet the image fits inside \mathbb{R}^5, so there must have been no more than five to start with).

(e) If L is one-to-one and onto, what can we say about $\dim(V)$?

$\dim(V) = 5$ (from parts (c) and (d)).