Review information for Calculus III Test I.

The test will cover sections 12.1–12.10. Here is a list of useful problems to review in the Chapter Review on pages 822–824. For the most part, the problems on the test will be very similar to these.

True-False: 1, 2, 4–13, 16–18.

Exercises: 1–6, 11–14, 16–18, 21, 23–27, 34, 40–42, 47–51, 55, 57ac, 59.

In general, possible problem types include the following:

- Determine whether the sequence is convergent or divergent. If it is convergent, find its limit (cf. #1–8).
- Determine whether the series is conditionally convergent, absolutely convergent, or divergent (cf. #11–26).
- Find the sum of the series (cf. #27–31).
- Find the radius of convergence and interval of convergence for the series (cf. #34, 40–44).
- Find the Taylor series for the function and its radius of convergence (cf. #47–54).
- Use series to find integrals and/or limits (cf. #55, 59).
- Estimate the function at a point using a Taylor approximation, and estimate the remainder (cf. #57).

Answers to the odd problems are in the back of the textbook. Answers to the even problems are below.

True-False

Exercises

34. \(e^{-1} < x < e \). 40. \([-5, 5]\). 42. \((-\infty, \infty)\). 48. \(x^2 - \frac{x^6}{3} + \frac{x^{10}}{5} - \frac{x^{14}}{7} + \frac{x^{18}}{9} - \cdots \) with \(R = 1 \). 50. \(x + 2x^2 + \frac{4x^3}{2!} + \frac{8x^4}{3!} + \frac{16x^5}{4!} + \cdots \) with \(R = \infty \).