Putnam Seminar 2003

More problems from "Mathematical Miniatures".

Complete Sequences

A sequence $\left(a_{m}\right)_{m \geq 1}$ with positive integer terms is called totally complete if each positive integer can be expressed as a sum of distinct terms of this sequence.

1. Prove that every positive integer sequence $a_{1}, a_{2}, \ldots, a_{n}, \ldots$ satisfying the conditions $a_{1}=1$ and

$$
a_{n+1} \leq 1+a_{1}+a_{2}+\cdots+a_{n}, \quad n=1,2, \ldots
$$

is totally complete.
2. (From the 1975 West German Olympiad) Two brothers inherited n pieces of gold with total weight $2 n$. Each piece has integer weight and the heaviest of them is not heavier than the remaining ones combined. Prove that if n is even then the brothers can divide the inheritance into two parts with equal weights.
3. Show that every integer can be represented in infinitely many ways as

$$
n= \pm 1^{2} \pm 2^{2} \pm \cdots \pm k^{2}
$$

where k is a positive integer and each \pm is replaced by either + or.-

