Putnam Seminar 2003

More problems from "Mathematical Miniatures".

Catalan's identity

Catalan's identity is

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{2 n-1}-\frac{1}{2 n}=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}
$$

(Can you prove it?)

1. Prove the equality

$$
\frac{1995}{2}-\frac{1994}{3}+\cdots-\frac{2}{1995}+\frac{1}{1996}=\frac{1}{999}+\frac{3}{1000}+\frac{5}{1001}+\cdots+\frac{1995}{1996}
$$

2. (First problem from the 1979 International Mathematics Olympiad) Let m and n be positive integers such that

$$
\frac{m}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots-\frac{1}{1318}+\frac{1}{1319}
$$

Prove that m is divisible by 1979 .
If you can do problem 2, then you should be able to use the same method to prove the following generalization:
$\mathbf{2}^{\prime}$. Let p be a prime greater than $3, q=\lfloor 2 p / 3\rfloor$ (i.e., q is the greatest integer less than or equal to $2 p / 3$), and let m and n be positive integers such that

$$
\frac{m}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+(-1)^{q-1} \frac{1}{q}
$$

Prove that m is divisible by p.
Problem $\mathbf{2}^{\prime}$ can in turn be used to solve the following problem, which was on the 1996 Putnam exam:
3. If p be a prime greater than 3 and $q=\lfloor 2 p / 3\rfloor$, prove that

$$
\binom{p}{1}+\binom{p}{2}+\cdots+\binom{p}{q}
$$

is divisible by p^{2}.

