
Putnam Seminar 2003

More problems from “Mathematical Miniatures”.

Catalan’s identity

Catalan’s identity is
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(Can you prove it?)

1. Prove the equality
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2. (First problem from the 1979 International Mathematics Olympiad) Let m and n be positive integers
such that
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Prove that m is divisible by 1979.

If you can do problem 2, then you should be able to use the same method to prove the following generalization:

2′. Let p be a prime greater than 3, q = b2p/3c (i.e., q is the greatest integer less than or equal to 2p/3),
and let m and n be positive integers such that
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Prove that m is divisible by p.

Problem 2′ can in turn be used to solve the following problem, which was on the 1996 Putnam exam:

3. If p be a prime greater than 3 and q = b2p/3c, prove that
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is divisible by p2.
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