Putnam Seminar 2003

Here are a few problems from "Mathematical Miniatures" by S. Savchev and T. Andreescu.

A telescoping sum

1. Evaluate in closed form

$$
\sum_{k=1}^{n} \frac{k}{(k+1)!}
$$

2. Compute the sum

$$
\sum_{k=1}^{n} \frac{k+1}{(k-1)!+k!+(k+1)!}
$$

3. (from the 1986 Polish Olympiad) Prove that for each $n \geq 3$, the number n ! can be represented as the sum of n distinct divisors of itself.

Lagrange's identity

For the next three problems, it is helpful to know Lagrange's identity, which states that

$$
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=(a c+b d)^{2}+(a d-b c)^{2}
$$

4. Let m and n be distinct positive integers. Represent $m^{6}+n^{6}$ as the sum of two perfect squares different from m^{6} and n^{6}.
5. Let $P(x)$ be a polynomial with real coefficients so that $P(x) \geq 0$ for all real x. Prove that there exist polynomials with real coefficients, $Q_{1}(x)$ and $Q_{2}(x)$, such that

$$
P(x)=Q_{1}^{2}(x)+Q_{2}^{2}(x) \quad \text { for all } x
$$

6. (from the 1985 British Olympiad) Show that the equation $x^{2}+y^{2}=z^{5}+z$ has infinitely many relatively prime integer solutions.
