Putnam Seminar - Week 1

1. (A1, 2013) Recall that a regular icosahedron is a convex polyhedron having 12 vertices and 20 faces; the faces are congruent equilateral triangles. On each face of a regular icosahedron is written a nonnegative integer such that the sum of all 20 integers is 39. Show that there are two faces that share a vertex and have the same integer written on them.
2. (B1, 2013) For positive integers n, let the numbers $c(n)$ be determined by the rules $c(1)=1, c(2 n)=c(n)$, and $c(2 n+1)=(-1)^{n} c(n)$. Find the value of

$$
\sum_{n=1}^{2013} c(n) c(n+2) .
$$

3. (A2, 2012) Let $*$ be a commutative and associative binary operation on a set S. Assume that for every x and y in S, there exists z in S such that $x * z=y$. (This z may depend on x and y.) Show that if a, b, c are in S and $a * c=b * c$, then $a=b$
4. (A2, 2000) Prove that there exist infinitely many integers n such that $n, n+1$, $n+2$ are each the sum of the squares of two integers. [Example: $0=0^{2}+0^{2}, 1=0^{2}+1^{2}$, $2=1^{2}+1^{2}$.]
5. (B2, 2004) Let m and n be positive integers. Show that

$$
\frac{(m+n)!}{(m+n)^{m+n}}<\frac{m!}{m^{m}} \frac{n!}{n^{n}} .
$$

6. On the domain $0 \leq \theta \leq 2 \pi$:
a) Prove that $\sin ^{2}(\theta) \sin (2 \theta)$ takes its maximum at $\pi / 3$ and $4 \pi / 3$ (and hence its minimum at $2 \pi / 3$ and $5 \pi / 3)$.
b) Show that

$$
\left|\sin ^{2} \theta\left\{\sin ^{3}(2 \theta) \sin ^{3}(4 \theta) \cdots \sin ^{3}\left(2^{n-1} \theta\right)\right\} \sin \left(2^{n} \theta\right)\right|
$$

takes its maximum at $\theta=\pi / 3$ (this maximum may also be attained at other points).
c) Derive the inequality

$$
\sin ^{2}(\theta) \sin ^{2}(2 \theta) \sin ^{2}(4 \theta) \cdots \sin ^{2}\left(2^{n} \theta\right) \leq(3 / 4)^{n}
$$

