(a) The collection $M_{n,n}$ of all $n \times n$ matrices may be regarded as the collection $\mathbf{R}^{n^2} = \mathbf{R}^n \times \cdots \times \mathbf{R}^n$ of all *n*-tuples of *n*-vectors by writing a matrix $A = (\mathbf{a}_1, \ldots, \mathbf{a}_n)$ in terms of its columns \mathbf{a}_i . Notice that vector addition and scalar multiplication coincide in $M_{n,n}$ and $\mathbf{R}^n \times \cdots \times \mathbf{R}^n$. Prove that det : $\mathbf{R}^n \times \cdots \times \mathbf{R}^n \to \mathbf{R}$ is multiplication.

(b) Show that det is differentiable, and compute its derivative.