(a) The collection $M_{n, n}$ of all $n \times n$ matrices may be regarded as the collection $\mathbf{R}^{n^{2}}=\mathbf{R}^{n} \times \cdots \times \mathbf{R}^{n}$ of all n-tuples of n-vectors by writing a matrix $A=\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right)$ in terms of its columns \mathbf{a}_{i}. Notice that vector addition and scalar multiplication coincide in $M_{n, n}$ and $\mathbf{R}^{n} \times \cdots \times \mathbf{R}^{n}$. Prove that det : $\mathbf{R}^{n} \times \cdots \times \mathbf{R}^{n} \rightarrow \mathbf{R}$ is multilinear.
(b) Show that det is differentiable, and compute its derivative.

