Suppose $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^m$ satisfies $\mathbf{f}(t\mathbf{a}) = t\mathbf{f}(\mathbf{a})$ for all $\mathbf{a} \in \mathbb{R}^n$ and $t \in \mathbb{R}$. Prove that if \mathbf{f} is differentiable at the origin, then \mathbf{f} is linear. *Hint:* It is enough to show that $\mathbf{f} = D\mathbf{f}((0))$.