Suppose $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ satisfies $\left.\mathbf{f}(t \mathbf{a})\right)=t \mathbf{f}(\mathbf{a})$ for all $\mathbf{a} \in \mathbb{R}^{n}$ and $t \in \mathbb{R}$. Prove that if \mathbf{f} is differentiable at the origin, then \mathbf{f} is linear. Hint: It is enough to show that $\mathbf{f}=D \mathbf{f}((0))$.

