An $n \times n$ matrix A is said to be orthogonal if $A A^{T}$ equals the identity matrix I_{n}.
(a) Prove that the collection $O(n)$ of all orthogonal $n \times n$ matrices is a group; i.e., the product of two orthogonal matrices is again orthogonal.
(b) Let I be an open interval containing $0, \mathbf{c}: I \rightarrow O(n)$ a differentiable curve with $\mathbf{c}(0)=I_{n}$. Prove that the matrix $A=\mathbf{c}^{\prime}(0)$ is skew-symmetric; i.e., $A+A^{T}=0$. Hint: If $M_{n, n} \cong R^{n^{2}}$ denotes the vector space of all $n \times n$ matrices, then the multiplication map

$$
\begin{aligned}
m: M_{n, n} \times M_{n, n} & \rightarrow M_{n, n} \\
(A, B) & \mapsto A \cdot B
\end{aligned}
$$

is bilinear, so that by a theorem proved in class, m is differentiable with derivative

$$
D m(A, B)(C, D)=m(A, D)+m(C, B)=A \cdot D+C \cdot B .
$$

