An $n \times n$ matrix A is said to be *orthogonal* if AA^T equals the identity matrix I_n .

(a) Prove that the collection O(n) of all orthogonal $n \times n$ matrices is a group; i.e., the product of two orthogonal matrices is again orthogonal.

(b) Let I be an open interval containing 0, $\mathbf{c} : I \to O(n)$ a differentiable curve with $\mathbf{c}(0) = I_n$. Prove that the matrix $A = \mathbf{c}'(0)$ is skew-symmetric; i.e., $A + A^T = 0$. *Hint:* If $M_{n,n} \cong \mathbb{R}^{n^2}$ denotes the vector space of all $n \times n$ matrices, then the multiplication map

$$m: M_{n,n} \times M_{n,n} \to M_{n,n}$$
$$(A, B) \mapsto A \cdot B$$

is bilinear, so that by a theorem proved in class, m is differentiable with derivative

$$Dm(A,B)(C,D) = m(A,D) + m(C,B) = A \cdot D + C \cdot B.$$