ON WELL-ALIGNED ELEMENTS OF GROUPS ACTING ON TREES

MAX FORESTER

1. Introduction

Suppose G acts without inversion on a simplicial tree T. In [CFL16] the notion of a *well-aligned* hyperbolic element was defined: g is well-aligned if there does not exist an element $h \in G$ such that $ghgh^{-1}$ fixes an edge of the axis T_g . Equivalently, g is well-aligned if, whenever T_g and $h(T_g)$ overlap with inconsistent orientations, the length of the overlap is at most |g|. See Figure 1. It was then shown (Theorem 6.9) that if a hyperbolic element g is well-aligned, then $scl(g) \ge 1/12$.

In [CF10] a lower bound on scl(g) was established when g is a hyperbolic element of an amalgam $G = A *_C B$ satisfying the "double coset condition". Namely, suppose g is represented by the cyclically reduced word w. If the double coset CgC does not contain any element represented by a cyclic conjugate of w^{-1} , then $scl(g) \ge 1/624$.

In [CFL16] it was claimed that being well-aligned is the *G*–tree analogue of the double coset condition. The purpose of this note is to explain and justify that statement.

Proposition 1.1. Let T be the Bass–Serre tree associated with the amalgamated free product $G = A *_C B$. Suppose w is a cyclically reduced word of length > 1 in the generators $A \cup B$, representing $g \in G$. The following are equivalent:

- (1) g is well-aligned;
- (2) CgC does not contain any element represented by a cyclic conjugate of w^{-1} .

2. THE BASS-SERRE TREE OF AN AMALGAM

Every element of $G = A *_C B$ either is in C or can be expressed as an alternating product

$$g = a_1b_2a_3\cdots h_n$$
 or $g = b_1a_2b_3\cdots h_n$

with $a_i \in A - C$ and $b_i \in B - C$ for all i, and $h_n = a_n$ or b_n . Such an expression is called a *reduced word* for g. It is *cyclically reduced* if n is even. The word is of *type AA* if it begins with a_1 and ends with a_n , of *type AB* if it begins with a_1 and ends with a_n , of *type BB* if it begins with a_n and ends with a_n .

The Bass–Serre tree T for $G = A *_C B$ has a distinguished edge e such that $G_e = C$, $G_{\partial_0 e} = B$, and $G_{\partial_1 e} = A$. Let $g = h_1 h_2 \cdots h_n$ be a non-trivial reduced alternating word. For each i let $g_i = h_1 \cdots h_i$. One verifies easily that if the word $h_1 \cdots h_n$ is of type AA or AB, then the edges

$$e, g_1\overline{e}, g_2e, g_3\overline{e}, \dots, g_{2j-1}\overline{e}, g_{2j}e, \dots$$
 (2.1)

2 MAX FORESTER

form an oriented path in T without backtracking, with initial endpoint $\partial_0 e$. If the word is of type BA or BB, then

$$\overline{e}$$
, $g_1 e$, $g_2 \overline{e}$, $g_3 e$, ..., $g_{2j-1} e$, $g_{2j} \overline{e}$, ... (2.2)

is an oriented path without backtracking, with initial endpoint $\partial_1 e$. In either case, e and $g_i e$ are coherently oriented if and only if i is even. It follows that $g = h_1 \cdots h_n$ is cyclically reduced if and only if g is hyperbolic and e is on the axis T_g . (Note that g may still be hyperbolic if *n* is odd; in this case *e* is not on the axis.)

In the following lemma, e is the distinguished edge discussed above.

Lemma 2.3. Suppose $g = h_1 h_2 \cdots h_n$ and $g' = h'_1 h'_2 \cdots h'_m$ are elements of G - C expressed as non-trivial alternating words. Suppose ge = g'e. Then g and g' are of the same type, m = n, and $(h_1 \cdots h_i)^{-1} (h'_1 \cdots h'_i) \in C$ for each i.

Proof. Let $g_i = h_1 \cdots h_i$ and $g_i' = h_1' \cdots h_i'$ for each i. The sequence in (2.1) or (2.2) gives the unique edge path in T from e to ge, whose length is n+1 (including e and ge). This path has initial endpoint $\partial_0 e$ if and only if h_1 is in A. Thus ge = g'e implies that both words are of the same type and n = m. Also evident from (2.1) or (2.2) is that $g_i e$ is the *i*th edge (or its reverse) along this segment, after e. Thus $g_i e = g_i' e$ for all i. Therefore $g_i^{-1} g_i' \in C$ for all i.

Remark 2.4. It now makes sense to refer to an element $g \in G-C$ as being cyclically reduced or not, being of one of the four types, or of having length n. (Take g = g' in the Lemma.)

Next, the distinguished edge e separates T into two subtrees T_A and T_B . Namely, T_A is the maximal subtree containing $\partial_1 e$ but not e, and T_B is the maximal subtree containing $\partial_0 e$ but not e. Let T_g denote the *characteristic subtree* for g. This is either the axis of g (if g is hyperbolic) or the subtree of fixed points of g.

Lemma 2.5. Suppose $g \in G - C$. Then

- (1) if g is of type AB or BA then $e \in T_g$,
- (2) if g is of type AA then $T_g \subset T_A$,
- (3) if g is of type BB then $T_g \subset T_B$.

Proof. First, consider the following statements:

- if g is of type AB then g(T_A) ⊂ T_A,
 if g is of type AA then g(T_B) ⊂ T_A,
 if g is of type BB then g(T_A) ⊂ T_B.

The statements follow by induction on the length of g (and direct examination in the cases $g \in A$ and $g \in B$). Next, we have already noted that g is hyperbolic and $e \in T_g$ if and only if g is of type AB or BA, so (1) holds. If g is elliptic then $e \not\in T_g$ because $g \not\in C$. So in cases (2) and (3), T_g is on one side of e. Since $g(T_g) = T_g$, only the side indicated is consistent with the four statements given above.

3. Proof of Proposition 1.1.

First we prove the easy direction, (1) implies (2). Suppose (2) does not hold, i.e. the element represented by some cyclic conjugate of w^{-1} lies in CgC. Then we can write $dg^{-1}d^{-1} = c_1gc_2$, or equivalently, $gc_2dgd^{-1} = c_1^{-1}$. Then $g(c_2d)g(c_2d)^{-1} = c_1^{-1}c_2^{-1}$. Taking $h = c_2d$ we see that $ghgh^{-1}$ fixes e, which is an edge on the axis of g (because g is cyclically reduced). Thus g is not well-aligned.

For the converse, suppose g is not well-aligned. Thus $ghgh^{-1}$ fixes an edge of T_g . We may assume that this edge is the distinguished edge e. The geometric meaning of this situation is shown in Figure 1. Since $e \in T_g$, the edges e and $g^{-1}e$ are coherently oriented and both in T_g . Since $g^{-1}e = hgh^{-1}e$, these two edges must also be on the axis $T_{hgh^{-1}}$. Therefore $T_g \cap T_{hgh^{-1}} = T_g \cap h(T_g)$ contains the segment $[e, g^{-1}e]$.

FIGURE 1. When g is not well-aligned. Geometrically, this means that T_g and $h(T_g)$ overlap in a segment of length > |g|, inducing opposite orientations on this segment. (The subtrees T_A , T_B are as shown when g is of type AB.)

Note that the starting assumptions do not change if we replace h by hg^k for any k. By doing so, we can arrange that h fixes a vertex between e and $g^{-1}e$.

Now suppose that g is of type AB, so that T_g contains the edge sequence (2.1). Then $T_h \subset T_B$, so by Lemma 2.5, h is of type BB.

Next, let e' be an edge in $h(T_g) \cap T_A$. We claim that for all sufficiently large k, the element $g^k h^{-1}$ has characteristic subtree $T_{g^k h^{-1}}$ inside T_A . If $e' \not\in T_g$ then for all sufficiently large k, the edge $g^k h^{-1} e'$ is coherently oriented with e' and is in $(T_g \cap T_A) - h(T_g)$. Then, the axis of $g^k h^{-1}$ goes through these edges and is inside T_A . If $e' \in T_g$, then for large k the edge $g^k h^{-1} e'$ is incoherently oriented with e', and e' separates it from e. Thus, e' separates e from $T_{g^k h^{-1}}$, and hence the latter is inside T_A . Now we can conclude, by Lemma 2.5, that $g^k h^{-1}$ is of type AA for all sufficiently large k.

Let $g = a_1 b_2 \cdots b_n$ and $h = b_1' a_2' \cdots b_m'$ be reduced words for g and h. Then $(a_1 \cdots b_n)^k$ is a reduced word for g^k . Now consider the word

$$(a_1 \cdots b_n)^k b_m'^{-1} \cdots b_1'^{-1}$$

which reduces to a type AA alternating word. This means that every letter in $b_m'^{-1}\cdots b_1'^{-1}$ reduces, leaving

$$g^k h^{-1} = (a_1 \cdots b_n)^{k-\ell-1} a_1 b_2 \cdots a_i c$$

for some i, some ℓ , and some $c \in C$. Hence

$$h = c^{-1}b_{i+1}\cdots b_n(a_1\cdots b_n)^{\ell},$$

and so

$$hgh^{-1} = c^{-1}b_{i+1}a_{i+2}\cdots b_n a_1b_2\cdots a_i c.$$

Since $ghgh^{-1} \in C$, it follows easily now that

$$a_i^{-1}b_{i-1}^{-1}\cdots b_2^{-1}a_1^{-1}b_n^{-1}\cdots a_{i+2}^{-1}b_{i+1}^{-1}\in CgC.$$

If g is of type BA then the proof is entirely analogous, with A and B reversed. This completes the proof.

REFERENCES

- [CF10] Danny Calegari and Koji Fujiwara, *Stable commutator length in word-hyperbolic groups*, Groups Geom. Dyn. **4** (2010), no. 1, 59–90. MR 2566301 (2011a:20109)
- [CFL16] Matt Clay, Max Forester, and Joel Louwsma, *Stable commutator length in Baumslag-Solitar groups and quasimorphisms for tree actions*, Trans. Amer. Math. Soc. **368** (2016), no. 7, 4751–4785. MR 3456160

E-mail address: mf@ou.edu