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1. INTRODUCTION

Suppose G acts without inversion on a simplicial tree T . In [CFL16] the notion of a
well-aligned hyperbolic element was defined: g is well-aligned if there does not exist an
element h ∈G such that g hg h−1 fixes an edge of the axis Tg . Equivalently, g is well-aligned
if, whenever Tg and h(Tg ) overlap with inconsistent orientations, the length of the overlap
is at most |g |. See Figure 1. It was then shown (Theorem 6.9) that if a hyperbolic element
g is well-aligned, then scl(g ) Ê 1/12.

In [CF10] a lower bound on scl(g ) was established when g is a hyperbolic element of
an amalgam G = A ∗C B satisfying the “double coset condition”. Namely, suppose g is
represented by the cyclically reduced word w . If the double coset C gC does not contain
any element represented by a cyclic conjugate of w−1, then scl(g ) Ê 1/624.

In [CFL16] it was claimed that being well-aligned is the G–tree analogue of the double
coset condition. The purpose of this note is to explain and justify that statement.

Proposition 1.1. Let T be the Bass–Serre tree associated with the amalgamated free product
G = A ∗C B. Suppose w is a cyclically reduced word of length > 1 in the generators A ∪B,
representing g ∈G. The following are equivalent:

(1) g is well-aligned;
(2) C gC does not contain any element represented by a cyclic conjugate of w−1.

2. THE BASS–SERRE TREE OF AN AMALGAM

Every element of G = A∗C B either is in C or can be expressed as an alternating product

g = a1b2a3 · · ·hn or g = b1a2b3 · · ·hn

with ai ∈ A −C and bi ∈ B −C for all i , and hn = an or bn . Such an expression is called a
reduced word for g . It is cyclically reduced if n is even. The word is of type AA if it begins
with a1 and ends with an , of type AB if it begins with a1 and ends with bn , of type BB if it
begins with b1 and ends with bn , and of type BA if it begins with b1 and ends with an .

The Bass–Serre tree T for G = A∗C B has a distinguished edge e such that Ge =C , G∂0e =
B , and G∂1e = A. Let g = h1h2 · · ·hn be a non-trivial reduced alternating word. For each i
let gi = h1 · · ·hi . One verifies easily that if the word h1 · · ·hn is of type AA or AB, then the
edges

e, g1e, g2e, g3e, . . . , g2 j−1e, g2 j e, · · · (2.1)
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form an oriented path in T without backtracking, with initial endpoint ∂0e. If the word is
of type BA or BB, then

e, g1e, g2e, g3e, . . . , g2 j−1e, g2 j e, · · · (2.2)

is an oriented path without backtracking, with initial endpoint ∂1e. In either case, e and
gi e are coherently oriented if and only if i is even. It follows that g = h1 · · ·hn is cyclically
reduced if and only if g is hyperbolic and e is on the axis Tg . (Note that g may still be
hyperbolic if n is odd; in this case e is not on the axis.)

In the following lemma, e is the distinguished edge discussed above.

Lemma 2.3. Suppose g = h1h2 · · ·hn and g ′ = h′
1h′

2 · · ·h′
m are elements of G−C expressed as

non-trivial alternating words. Suppose g e = g ′e. Then g and g ′ are of the same type, m = n,
and (h1 · · ·hi )−1(h′

1 · · ·h′
i ) ∈C for each i .

Proof. Let gi = h1 · · ·hi and g ′
i = h′

1 · · ·h′
i for each i . The sequence in (2.1) or (2.2) gives the

unique edge path in T from e to g e, whose length is n +1 (including e and g e). This path
has initial endpoint ∂0e if and only if h1 is in A. Thus g e = g ′e implies that both words are
of the same type and n = m. Also evident from (2.1) or (2.2) is that gi e is the i th edge (or
its reverse) along this segment, after e. Thus gi e = g ′

i e for all i . Therefore g−1
i g ′

i ∈C for all
i . �

Remark 2.4. It now makes sense to refer to an element g ∈G−C as being cyclically reduced
or not, being of one of the four types, or of having length n. (Take g = g ′ in the Lemma.)

Next, the distinguished edge e separates T into two subtrees TA and TB . Namely, TA is
the maximal subtree containing ∂1e but not e, and TB is the maximal subtree containing
∂0e but not e. Let Tg denote the characteristic subtree for g . This is either the axis of g (if g
is hyperbolic) or the subtree of fixed points of g .

Lemma 2.5. Suppose g ∈G −C . Then

(1) if g is of type AB or BA then e ∈ Tg ,
(2) if g is of type AA then Tg ⊂ TA,
(3) if g is of type BB then Tg ⊂ TB .

Proof. First, consider the following statements:

• if g is of type AB then g (TA) ⊂ TA, • if g is of type AA then g (TB ) ⊂ TA,
• if g is of type BA then g (TB ) ⊂ TB , • if g is of type BB then g (TA) ⊂ TB .

The statements follow by induction on the length of g (and direct examination in the cases
g ∈ A and g ∈ B). Next, we have already noted that g is hyperbolic and e ∈ Tg if and only if
g is of type AB or BA, so (1) holds. If g is elliptic then e 6∈ Tg because g 6∈C . So in cases (2)
and (3), Tg is on one side of e. Since g (Tg ) = Tg , only the side indicated is consistent with
the four statements given above. �



ON WELL-ALIGNED ELEMENTS 3

3. PROOF OF PROPOSITION 1.1.

First we prove the easy direction, (1) implies (2). Suppose (2) does not hold, i.e. the
element represented by some cyclic conjugate of w−1 lies in C gC . Then we can write
d g−1d−1 = c1g c2, or equivalently, g c2d g d−1 = c−1

1 . Then g (c2d)g (c2d)−1 = c−1
1 c−1

2 . Taking
h = c2d we see that g hg h−1 fixes e, which is an edge on the axis of g (because g is cyclically
reduced). Thus g is not well-aligned.

For the converse, suppose g is not well-aligned. Thus g hg h−1 fixes an edge of Tg . We
may assume that this edge is the distinguished edge e. The geometric meaning of this
situation is shown in Figure 1. Since e ∈ Tg , the edges e and g−1e are coherently oriented
and both in Tg . Since g−1e = hg h−1e, these two edges must also be on the axis Thg h−1 .
Therefore Tg ∩Thg h−1 = Tg ∩h(Tg ) contains the segment [e, g−1e].

eg−1e

Tg

h(Tg )

TATB

FIGURE 1. When g is not well-aligned. Geometrically, this means that Tg

and h(Tg ) overlap in a segment of length > |g |, inducing opposite orienta-
tions on this segment. (The subtrees TA,TB are as shown when g is of type
AB.)

Note that the starting assumptions do not change if we replace h by hg k for any k. By
doing so, we can arrange that h fixes a vertex between e and g−1e.

Now suppose that g is of type AB , so that Tg contains the edge sequence (2.1). Then
Th ⊂ TB , so by Lemma 2.5, h is of type BB.

Next, let e ′ be an edge in h(Tg )∩TA. We claim that for all sufficiently large k, the element
g k h−1 has characteristic subtree Tg k h−1 inside TA. If e ′ 6∈ Tg then for all sufficiently large k,

the edge g k h−1e ′ is coherently oriented with e ′ and is in (Tg ∩TA)−h(Tg ). Then, the axis
of g k h−1 goes through these edges and is inside TA. If e ′ ∈ Tg , then for large k the edge
g k h−1e ′ is incoherently oriented with e ′, and e ′ separates it from e. Thus, e ′ separates e
from Tg k h−1 , and hence the latter is inside TA. Now we can conclude, by Lemma 2.5, that

g k h−1 is of type AA for all sufficiently large k.
Let g = a1b2 · · ·bn and h = b′

1a′
2 · · ·b′

m be reduced words for g and h. Then (a1 · · ·bn)k is
a reduced word for g k . Now consider the word

(a1 · · ·bn)k b′−1
m · · ·b′−1

1
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which reduces to a type AA alternating word. This means that every letter in b′−1
m · · ·b′−1

1
reduces, leaving

g k h−1 = (a1 · · ·bn)k−`−1a1b2 · · ·ai c

for some i , some `, and some c ∈C . Hence

h = c−1bi+1 · · ·bn(a1 · · ·bn)`,

and so
hg h−1 = c−1bi+1ai+2 · · ·bn a1b2 · · ·ai c.

Since g hg h−1 ∈C , it follows easily now that

a−1
i b−1

i−1 · · ·b−1
2 a−1

1 b−1
n · · ·a−1

i+2b−1
i+1 ∈C gC .

If g is of type BA then the proof is entirely analogous, with A and B reversed. This com-
pletes the proof.
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