Final Exam
Algebraic Topology
May 10, 2007

You may apply theorems from the course, but please give the name or statement of the theorem.

1. Consider the long exact sequence of homotopy groups

$$
\cdots \rightarrow \pi_{n}\left(A, B, x_{0}\right) \xrightarrow{i_{*}} \pi_{n}\left(X, B, x_{0}\right) \xrightarrow{j_{*}} \pi_{n}\left(X, A, x_{0}\right) \xrightarrow{\partial} \pi_{n-1}\left(A, B, x_{0}\right) \rightarrow \cdots
$$

for a triple (X, A, B). Show that the sequence is exact at the $\pi_{n}\left(X, B, x_{0}\right)$ term.
First, $\operatorname{Im}\left(i_{*}\right) \subset \operatorname{Ker}\left(j_{*}\right)$: recall that an element $[f] \in \pi_{n}\left(X, A, x_{0}\right)$ is trivial if and only if f is homotopic (through maps of triples) to a map with image in A. So $j_{*}\left(i_{*}([g])\right)=[j \circ i \circ g]$ is trivial for any $[g] \in \pi_{n}\left(A, B, x_{0}\right)$ since $j \circ i \circ g$ already has image in A.

Next, $\operatorname{Ker}\left(j_{*}\right) \subset \operatorname{Im}\left(i_{*}\right):$ if $[f] \in \operatorname{Ker}\left(j_{*}\right)$ then after a homotopy we can assume that f maps $\left(I^{n}, \partial I^{n}, J^{n-1}\right)$ into $\left(A, B, x_{0}\right)$, and now it represents an element of $i_{*}\left(\pi_{n}\left(A, B, x_{0}\right)\right)$.
2. (a) State the Lefschetz fixed point theorem, and define the Lefschetz number $\tau(f)$ of a map $f: X \rightarrow X$, where X is a (retract of a) finite simplicial complex. (Note that this includes compact CW complexes.)
(b) Give the homology groups and cohomology groups of $\mathbb{C P}^{n}$ in \mathbb{Z}-coefficients, and also describe the cup product structure (no proof needed).
(a) If X is a retract of a finite simplicial complex then its homology groups are finitely generated, and non-zero in only finitely many dimensions. Define the Lefschetz number $\tau(f)$ to be $\sum_{i}(-1)^{i} \operatorname{tr}\left(f_{*}: H_{i}(X) / T_{i} \rightarrow H_{i}(X) / T_{i}\right)$, where $H_{i}(X) / T_{i}$ is the homology group with torsion factored out. The Lefschetz fixed point theorem says that if $\tau(f) \neq 0$ then f has a fixed point.
(b) $H_{i}\left(\mathbb{C P}^{n}\right)$ is \mathbb{Z} for i even and $0 \leq i \leq 2 n$ and 0 otherwise. The cohomology groups $H^{i}\left(\mathbb{C P}^{n} ; \mathbb{Z}\right)$ are the same. If α is a generator of $H^{2}\left(\mathbb{C P}^{n} ; \mathbb{Z}\right)$ then α^{i} generates $H^{2 i}(\mathbb{C P} ; \mathbb{Z})$ for $i \leq n$. That is, $H^{*}\left(\mathbb{C P}^{n} ; \mathbb{Z}\right) \cong \mathbb{Z}[\alpha] /\left(\alpha^{n+1}\right)$ with $|\alpha|=2$.
(c) If $f^{*}: H^{i}\left(\mathbb{C P}^{n}\right) \rightarrow H^{i}\left(\mathbb{C P}^{n}\right)$ is multiplication by d, what is the map $f_{*}: H_{i}\left(\mathbb{C P}^{n}\right) \rightarrow H_{i}\left(\mathbb{C P}^{n}\right)$?

Explain why, using the universal coefficient theorem.
(d) Prove that every map $f: \mathbb{C} P^{2 k} \rightarrow \mathbb{C P}^{2 k}$ has a fixed point. [Hint: use the cup product.]
(c) For every i the group $H_{i-1}\left(\mathbb{C P}^{n}\right)$ is free, so $\operatorname{Ext}\left(H_{i-1}\left(\mathbb{C P}^{n}\right), \mathbb{Z}\right)=0$, and hence $H^{i}\left(\mathbb{C P}^{n} ; \mathbb{Z}\right) \cong$ $\operatorname{Hom}\left(H_{i}\left(\mathbb{C P}^{n}\right), \mathbb{Z}\right)$ by the universal coefficient theorem. Moreover, by naturality we have the commutative diagram

and therefore $\left(f_{*}\right)^{*}$ is nultiplication by d. This implies that f_{*} is also multiplication by d.
(d) Let $n=2 k$. Let $\alpha \in H^{2}\left(\mathbb{C P}^{n} ; \mathbb{Z}\right)$ be a generator and suppose $f^{*}(\alpha)=d \alpha$. Then $f^{*}\left(\alpha^{i}\right)=$ $\left(f^{*}(\alpha)\right)^{i}=d^{i} \alpha^{i}$, so $f^{*}: H^{2 i}\left(\mathbb{C} P^{n} ; \mathbb{Z}\right) \rightarrow H^{2 i}(\mathbb{C P} ; \mathbb{Z})$ is multiplication by d^{i}. By part (c) the map $f_{*}: H_{2 i}\left(\mathbb{C P}^{n}\right) \rightarrow H_{2 i}\left(\mathbb{C P}^{n}\right)$ is also multiplication by d^{i}. So $\tau(f)=\sum_{i=0}^{n}(-1)^{2 i} d^{i}=\sum_{i=0}^{n} d^{i}$. Now $d^{0}=1$ and $\sum_{i=1}^{n} d^{i}$ is even, so $\tau(f) \neq 0$.
3. Prove the extension lemma: Let (X, A) be a finite-dimensional CW pair and Y a path connected space such that $\pi_{n-1}(Y)=0$ for all n for which $X-A$ has an n-cell. Then every map $f: A \rightarrow Y$ can be extended to a map $X \rightarrow Y$. [Hint: define the extension cell-by-cell, in increasing dimensions.]

First, extend to the 0-cells of $X-A$ by sending them to any points of Y. Next, assume that f has been extended to all of $X^{(n-1)} \cup A$. Let e be an n-cell of $X-A$ with attaching map $\phi: \partial D^{n} \rightarrow X^{(n-1)}$. Then $[f \circ \phi] \in \pi_{n-1}(Y)$ and this group is trivial by assumption. So $f \circ \phi$ extends to a map $D^{n} \rightarrow Y$, and this extension joins with f to give an extension to $\left(X^{(n-1)} \cup e\right) \cup A$. The other n-cells can be handled simultaneously, since their interiors are disjoint. By induction on n, f extends to all of X.
4. Let (X, A) be a CW pair with A contractible. Use the extension lemma to show that A is a retract of X.

Consider the identity map $i: A \rightarrow A$, and note that $\pi_{n-1}(A)=0$ for all n. Hence, by the extension lemma, i extends to a map $r: X \rightarrow A$. (We must either assume X finite-dimensional, or that the extension lemma holds without this assumption (it does).) Now, r is a retraction since it is the identity on A.
5. Let $K \subset S^{3}$ be a knot, i.e. an embedded circle. Let N be a closed ε-neighborhood of K which is homeomorphic to the solid torus $D^{2} \times S^{1}$. Let $X=S^{3}-\operatorname{int}(N)$. Note that N and X are both compact 3 -manifolds with boundary, with common boundary $X \cap N$, which is a torus.

Use the Mayer-Vietoris sequence to compute the first homology group of X. [It turns out the answer does not depend on whether K is actually knotted or not!]

We have the following portion of the Mayer-Vietoris sequence for S^{3} expressed as the union of N and X :

$$
\rightarrow H_{2}\left(S^{3}\right) \rightarrow H_{1}(N \cap X) \rightarrow H_{1}(N) \oplus H_{1}(X) \rightarrow H_{1}\left(S^{3}\right) \rightarrow
$$

and note that $H_{2}\left(S^{3}\right)=H_{1}\left(S^{3}\right)=0$. Hence $H_{1}(N \cap X) \cong H_{1}(N) \oplus H_{1}(X)$. Next, $H_{1}(N \cap X) \cong$ $H_{1}\left(S^{1} \times S^{1}\right) \cong \mathbb{Z} \oplus \mathbb{Z}$ and $H_{1}(N) \cong \mathbb{Z}$ since N deformation retracts onto a circle. Then we have $H_{1}(X) \cong H_{1}(N \cap X) / H_{1}(N) \cong(\mathbb{Z} \oplus \mathbb{Z}) / \mathbb{Z} \cong \mathbb{Z} \oplus \mathbb{Z} / n \mathbb{Z}$ for some n. Since $H_{1}(N) \oplus H_{1}(X) \cong \mathbb{Z} \oplus \mathbb{Z}$, we must have $n=1$ and $H_{1}(X) \cong \mathbb{Z}$.

For $H_{2}(X)$ we can proceed similarly, but the Mayer-Vietoris sequence gives slightly less information. Namely, the sequence

$$
\rightarrow H_{3}(N) \oplus H_{3}(X) \rightarrow H_{3}\left(S^{3}\right) \rightarrow H_{2}(N \cap X) \rightarrow H_{2}(N) \oplus H_{2}(X) \rightarrow H_{2}\left(S^{3}\right) \rightarrow
$$

yields the exact sequence

$$
0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow H_{2}(X) \rightarrow 0
$$

since $H_{2}(N)=H_{2}\left(S^{3}\right)=0$. (The groups $H_{3}(N)$ and $H_{3}(X)$ vanish since N and X are 3 -manifolds with non-empty boundary.) Thus $H_{2}(X)$ is finite cyclic.

In fact, $H_{2}(X)=0$, as we can see using Lefschetz duality. First, $H_{3}(X, \partial X) \cong \mathbb{Z}$, and in the long exact sequence for the pair $(X, \partial X)$, the boundary map takes a fundamental class to a fundamental class of the boundary. Thus, the exact sequence

$$
\rightarrow H_{3}(X, \partial X) \rightarrow H_{2}(\partial X) \rightarrow H_{2}(X) \rightarrow H_{2}(X, \partial X)
$$

has the form

$$
\rightarrow \mathbb{Z} \cong \mathbb{Z} \xrightarrow{0} H_{2}(X) \rightarrow H_{2}(X, \partial X) .
$$

Hence $H_{2}(X)$ is a subgroup of $H_{2}(X, \partial X)$, and must be zero if $H_{2}(X, \partial X)$ has no torsion. Indeed, $H_{2}(X, \partial X) \cong H^{1}(X)$ by Lefschetz duality, and this latter group is $\operatorname{Hom}\left(H_{1}(X), \mathbb{Z}\right) \cong \mathbb{Z}$.

Remark: If K is unknotted then X is homeomorphic to the solid torus $D^{2} \times S^{1}$. The calculations above show that X has the same homology as $D^{2} \times S^{1}$, even if K is knotted. So homology does not detect knottedness.

