
Final Exam
Algebraic Topology

May 10, 2007

You may apply theorems from the course, but please give the name or statement of the theorem.

1. Consider the long exact sequence of homotopy groups

· · · → πn(A,B, x0)
i∗→ πn(X,B, x0)

j∗
→ πn(X,A, x0)

∂
→ πn−1(A,B, x0) → · · ·

for a triple (X,A,B). Show that the sequence is exact at the πn(X,B, x0) term.

First, Im(i∗) ⊂ Ker(j∗): recall that an element [f ] ∈ πn(X,A, x0) is trivial if and only if f is
homotopic (through maps of triples) to a map with image in A. So j∗(i∗([g])) = [j ◦ i ◦ g] is trivial
for any [g] ∈ πn(A,B, x0) since j ◦ i ◦ g already has image in A.

Next, Ker(j∗) ⊂ Im(i∗): if [f ] ∈ Ker(j∗) then after a homotopy we can assume that f maps
(In, ∂In, Jn−1) into (A,B, x0), and now it represents an element of i∗(πn(A,B, x0)).

2. (a) State the Lefschetz fixed point theorem, and define the Lefschetz number τ(f) of a map
f : X → X, where X is a (retract of a) finite simplicial complex. (Note that this includes compact
CW complexes.)

(b) Give the homology groups and cohomology groups of CPn in Z-coefficients, and also describe
the cup product structure (no proof needed).

(a) If X is a retract of a finite simplicial complex then its homology groups are finitely gen-
erated, and non-zero in only finitely many dimensions. Define the Lefschetz number τ(f) to be
∑

i(−1)i tr(f∗ : Hi(X)/Ti → Hi(X)/Ti), where Hi(X)/Ti is the homology group with torsion fac-
tored out. The Lefschetz fixed point theorem says that if τ(f) 6= 0 then f has a fixed point.

(b) Hi(CPn) is Z for i even and 0 ≤ i ≤ 2n and 0 otherwise. The cohomology groups H i(CPn; Z)
are the same. If α is a generator of H2(CPn; Z) then αi generates H2i(CPn; Z) for i ≤ n. That is,
H∗(CPn; Z) ∼= Z[α]/(αn+1) with |α| = 2.

(c) If f∗ : H i(CPn) → H i(CPn) is multiplication by d, what is the map f∗ : Hi(CPn) → Hi(CPn) ?
Explain why, using the universal coefficient theorem.

(d) Prove that every map f : CP2k → CP2k has a fixed point. [Hint: use the cup product.]

(c) For every i the group Hi−1(CPn) is free, so Ext(Hi−1(CPn), Z) = 0, and hence H i(CPn; Z) ∼=
Hom(Hi(CPn), Z) by the universal coefficient theorem. Moreover, by naturality we have the com-
mutative diagram

H i(CPn; Z)
h

−−−−→
∼=

Hom(Hi(CPn), Z)
x





·d

x





(f∗)∗

H i(CPn; Z)
h

−−−−→
∼=

Hom(Hi(CPn), Z)

and therefore (f∗)
∗ is nultiplication by d. This implies that f∗ is also multiplication by d.



(d) Let n = 2k. Let α ∈ H2(CPn; Z) be a generator and suppose f∗(α) = dα. Then f∗(αi) =
(f∗(α))i = diαi, so f∗ : H2i(CPn; Z) → H2i(CPn; Z) is multiplication by di. By part (c) the map
f∗ : H2i(CPn) → H2i(CPn) is also multiplication by di. So τ(f) =

∑n
i=0(−1)2idi =

∑n
i=0 di. Now

d0 = 1 and
∑n

i=1 di is even, so τ(f) 6= 0.

3. Prove the extension lemma: Let (X,A) be a finite-dimensional CW pair and Y a path connected
space such that πn−1(Y ) = 0 for all n for which X−A has an n-cell. Then every map f : A → Y can
be extended to a map X → Y . [Hint: define the extension cell-by-cell, in increasing dimensions.]

First, extend to the 0-cells of X − A by sending them to any points of Y . Next, assume
that f has been extended to all of X(n−1) ∪ A. Let e be an n-cell of X − A with attaching map
φ : ∂Dn → X(n−1). Then [f ◦ φ] ∈ πn−1(Y ) and this group is trivial by assumption. So f ◦ φ
extends to a map Dn → Y , and this extension joins with f to give an extension to (X(n−1) ∪e)∪A.
The other n-cells can be handled simultaneously, since their interiors are disjoint. By induction on
n, f extends to all of X.

4. Let (X,A) be a CW pair with A contractible. Use the extension lemma to show that A is a
retract of X.

Consider the identity map i : A → A, and note that πn−1(A) = 0 for all n. Hence, by the
extension lemma, i extends to a map r : X → A. (We must either assume X finite-dimensional, or
that the extension lemma holds without this assumption (it does).) Now, r is a retraction since it
is the identity on A.

5. Let K ⊂ S3 be a knot, i.e. an embedded circle. Let N be a closed ε-neighborhood of K which
is homeomorphic to the solid torus D2 × S1. Let X = S3 − int(N). Note that N and X are both
compact 3-manifolds with boundary, with common boundary X ∩ N , which is a torus.

Use the Mayer-Vietoris sequence to compute the first homology group of X. [It turns out the
answer does not depend on whether K is actually knotted or not!]

We have the following portion of the Mayer-Vietoris sequence for S3 expressed as the union of
N and X:

→ H2(S
3) → H1(N ∩ X) → H1(N) ⊕ H1(X) → H1(S

3) →

and note that H2(S
3) = H1(S

3) = 0. Hence H1(N ∩ X) ∼= H1(N) ⊕ H1(X). Next, H1(N ∩ X) ∼=
H1(S

1 × S1) ∼= Z ⊕ Z and H1(N) ∼= Z since N deformation retracts onto a circle. Then we have
H1(X) ∼= H1(N ∩X)/H1(N) ∼= (Z⊕Z)/Z ∼= Z⊕Z/nZ for some n. Since H1(N)⊕H1(X) ∼= Z⊕Z,
we must have n = 1 and H1(X) ∼= Z.

For H2(X) we can proceed similarly, but the Mayer-Vietoris sequence gives slightly less infor-
mation. Namely, the sequence

→ H3(N) ⊕ H3(X) → H3(S
3) → H2(N ∩ X) → H2(N) ⊕ H2(X) → H2(S

3) →

yields the exact sequence
0 → Z → Z → H2(X) → 0

since H2(N) = H2(S
3) = 0. (The groups H3(N) and H3(X) vanish since N and X are 3-manifolds

with non-empty boundary.) Thus H2(X) is finite cyclic.



In fact, H2(X) = 0, as we can see using Lefschetz duality. First, H3(X,∂X) ∼= Z, and in
the long exact sequence for the pair (X,∂X), the boundary map takes a fundamental class to a
fundamental class of the boundary. Thus, the exact sequence

→ H3(X,∂X) → H2(∂X) → H2(X) → H2(X,∂X)

has the form
→ Z

∼=
→ Z

0
→ H2(X) → H2(X,∂X).

Hence H2(X) is a subgroup of H2(X,∂X), and must be zero if H2(X,∂X) has no torsion. Indeed,
H2(X,∂X) ∼= H1(X) by Lefschetz duality, and this latter group is Hom(H1(X), Z) ∼= Z.

Remark: If K is unknotted then X is homeomorphic to the solid torus D2 × S1. The calcu-
lations above show that X has the same homology as D2 × S1, even if K is knotted. So homology
does not detect knottedness.


