Exam I Solutions
Topology (Math 5863)
$\mathbf{1 (a)}$ If X and Y are topological spaces, let $\mathcal{C}(X, Y)$ be the set of continuous maps from X to Y. Give the definition of the compact-open topology on $\mathcal{C}(X, Y)$ by giving a subbasis.
(b) Now suppose that X is locally compact and Hausdorff, and give $\mathcal{C}(X, Y)$ the compact-open topology. Define the evaluation map $e: X \times \mathcal{C}(X, Y) \rightarrow Y$ by the formula $e(x, f)=f(x)$. Prove that this map is continuous.
[Hint: recall that X locally compact implies that for every open neighborhood W of x, there is an open neighborhood U with $\bar{U} \subset W$ and \bar{U} compact.]

Solution.

(A) For each compact set $C \subset X$ and open set $U \subset Y$ let

$$
S(C, U)=\{f \in \mathcal{C}(X, Y) \mid f(C) \subset U\}
$$

The set of all such sets $S(C, U)$ is a subbasis for the compact-open topology on $\mathcal{C}(X, Y)$.
(в) Let (x, f) be a point in $X \times \mathcal{C}(X, Y)$ and $V \subset Y$ a neighborhood of $e(x, f)$. We need to find a neighborhood of (x, f) that is mapped by e into V.

Since f is continuous and $f(x) \in V$, the set $W=f^{-1}(V)$ is an open neighborhood of x in X. By local compactness and the Hausdorff property, there is a neighborhood U of x such that $\bar{U} \subset W$ and \bar{U} is compact. Now $U \times S(\bar{U}, V)$ is an open neighborhood of (x, f) since $f(\bar{U}) \subset V$. Also, any $\left(x^{\prime}, f^{\prime}\right) \in U \times S(\bar{U}, V)$ is mapped to V by e, since $x^{\prime} \in U$ and f^{\prime} takes U into V.

2(a) Define what it means for $r: X \rightarrow A$ to be a retraction, where A is a subspace of X.
(b) Let $i: A \rightarrow X$ be inclusion and let $r: X \rightarrow A$ be a retraction, and pick a basepoint $a_{0} \in A$. Show that the induced homomorphism $i_{*}: \pi_{1}\left(A, a_{0}\right) \rightarrow \pi_{1}\left(X, a_{0}\right)$ is injective.
(c) Show that there is no retraction of the "solid torus" $S^{1} \times D^{2}$ to the boundary torus $S^{1} \times S^{1}$.

Solution.

(A) r is a retraction if r is continuous and $r(a)=a$ for all $a \in A$.
(в) The retraction property means that $r \circ i$ is the identity map on A. Hence, $r_{*} \circ i_{*}=(r \circ i)_{*}=$ $(\mathrm{id})_{*}=\mathrm{id}$, the identity homomorphism on $\pi_{1}\left(A, a_{0}\right)$. In particular, this composition is a bijection, and it follows that i_{*} is injective and r_{*} is surjective.
(c) We know that $\pi_{1}\left(S^{1}\right) \cong \mathbb{Z}$ and $\pi_{1}\left(D^{2}\right) \cong 1$, and therefore $\pi_{1}\left(S^{1} \times S^{1}\right) \cong \mathbb{Z} \times \mathbb{Z}$ and $\pi_{1}\left(S^{1} \times D^{2}\right) \cong \mathbb{Z} \times 1 \cong \mathbb{Z}$. By part (b), if there is a retraction then there will be a corresponding injective homomorphism $\mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$. However, this is impossible. For instance, if $(1,0)$ and $(0,1)$ map to m and n respectively, then $(n, 0)$ and $(0, m)$ both map to $m n$.
3. Let $p: E \rightarrow B$ be a covering map. Choose $e_{0} \in E$ and $b_{0} \in B$ such that $p\left(e_{0}\right)=b_{0}$.
(a) Define the lifting correspondence $\Phi: \pi_{1}\left(B, b_{0}\right) \rightarrow p^{-1}\left(b_{0}\right)$.
(b) Show that Φ is surjective, and that Φ is injective if E is simply connected. State carefully any results that you use.

Solution. Note, we should also assume that E is path connected.
(A) For each $[f] \in \pi_{1}\left(B, b_{0}\right)$ let \tilde{f} be the unique lift of f starting at e_{0}. Then $\Phi([f])=\tilde{f}(1)$. This is well defined because if $[f]=[g]$ then any path homotopy from f to g lifts to a path homotopy from \tilde{f} to \tilde{g}, showing that \tilde{f} and \tilde{g} have the same endpoints in $p^{-1}\left(b_{0}\right)$.
(в) For surjectivity, suppose $e_{1} \in p^{-1}\left(b_{0}\right)$. Since E is path connected, there is a path \tilde{f} from e_{0} to e_{1}. Then \tilde{f} is a lift of the loop $f=p \circ \tilde{f}$, and it starts at e_{0}, and therefore $e_{1}=\tilde{f}(1)=\Phi([f])$.

For injectivity, suppose $\Phi([f])=\Phi([g])=e_{1} \in p^{-1}\left(b_{0}\right)$. The lifts \tilde{f} and \tilde{g} (of f and g respectively, starting at e_{0}) are paths in E from e_{0} to e_{1}. Since E is simply connected, there is a path homotopy F from \tilde{f} to \tilde{g}. Then $p \circ F$ is a path homotopy from f to g, and therefore $[f]=[g]$.
4. Let $h: I \rightarrow X$ be a path from x_{0} to x_{1}.
(a) Give the definition of the change-of-basepoint homomorphism $\beta_{h}: \pi_{1}\left(X, x_{1}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$. [Or, in Munkres notation, the homomorphism $\widehat{h}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{1}\right)$.]
(b) Prove that β_{h} (or \widehat{h}) is a homomorphism, and an isomorphism.

Solution. (the For Munkres version see Theorem 52.1.)
(A) We define $\beta_{h}([f])=[h \cdot f \cdot \bar{h}]$. This is well defined because $[h \cdot f \cdot \bar{h}]=[h][f][\bar{h}]$ and multiplication of path homotopy classes is well defined.
(в) First, $\beta_{h}([f]) \beta_{h}([g])=[h \cdot f \cdot \bar{h}][h \cdot g \cdot \bar{h}]=[h][f][\bar{h}][h][g][\bar{h}]=[h][f][g][\bar{h}]=[h \cdot f \cdot g \cdot \bar{h}]=$ $\beta_{h}([f \cdot g])=\beta_{h}([f][g])$, and so β_{h} is a homomorphism. Next we claim that $\beta_{\bar{h}}$ and β_{h} are inverse homomorphisms (and therefore are isomorphims). We verify: $\beta_{h}\left(\beta_{\bar{h}}([f])\right)=[h \cdot \bar{h} \cdot f \cdot h \cdot \bar{h}]=[f]$ and $\beta_{\bar{h}}\left(\beta_{h}([f])\right)=[\bar{h} \cdot h \cdot f \cdot \bar{h} \cdot h]=[f]$.
5. Let $p: E \rightarrow B$ be a covering map with B connected. Show that if $p^{-1}\left(b_{0}\right)$ has k elements for some $b_{0} \in B$ then $p^{-1}(b)$ has k elements for every $b \in B$.

Solution.

Define sets $A \subset B$ and $C \subset B$ as follows: $A=\left\{b \in B| | p^{-1}(b) \mid=k\right\}$ and $C=\{b \in B \mid$ $\left.\left|p^{-1}(b)\right| \neq k\right\}$. Clearly $A \cap C=\emptyset$ and $A \cup C=B$. We claim that A and B are both open sets.

If $b \in A$ then there is an evenly covered neighborhood U of b. Then $p^{-1}(U) \cong V_{1} \cup \cdots \cup V_{k}$, with each slice V_{i} mapping by p homeomorphically onto U. There are k slices, because $p^{-1}(b)$ has k elements, and it contains one element of each slice. The same is true of any $b^{\prime} \in U$, and therefore $U \subset A$.

If $b \in C$ then an evenly covered neighborhood U of b has preimage equal to the union of a collection of slices, having the same cardinality as $p^{-1}(b)$. Every fiber $p^{-1}\left(b^{\prime}\right)$ has this same cardinality, which is not k. Hence, $U \subset C$.

Thus, A and C are open sets. Since A contains b_{0} and B is connected, it must be the case that $C=\emptyset$, and $B=A$.

