Homework solutions, 3/2/14

Munkres $\S 58 \# 2$.
(a) $B^{2} \times S^{1}$. This deformation retracts to the circle $\{0\} \times S^{1}$, with fundamental group \mathbb{Z}.
(b) $T-\{p\}$. This deformation retracts onto a subspace homeomorphic to $S^{1} \vee S^{1}$. Consider the unit square with sides identified to form T, and remove p from the center. Then push out to the boundary of the square, which is really $S^{1} \vee S^{1}$ when the identifications are made.
(c) $S^{1} \times I$. This deformation retracts to the circle $S^{1} \times\{0\}$.
(d) $S^{1} \times \mathbb{R}$. This deformation retracts to the circle $S^{1} \times\{0\}$.
(e) $R^{3}-Z$ where Z is the union of the non-negative x, y, and z axes. Removing the origin only, the space deformation retracts onto the sphere S^{2}. Removing the three rays, it deformation retracts onto the sphere minus three points. Finally, the sphere minus three points deformation retracts onto a copy of $S^{1} \vee S^{1}$. (The first puncture gives an open disk, then there are two more punctures.)
(f) $\{x:\|x\|>1\}$ deformation retracts onto S^{1} (of radius larger than 1).
(g) $\{x:\|x\| \geq 1\}$ deformation retracts onto S^{1}.
(h) $\{x:\|x\|<1\}$ is contractible.
(i) $S^{1} \cup\left(\mathbb{R}_{+} \times 0\right)$ deformation retracts onto S^{1}.
(j) $S^{1} \cup\left(\mathbb{R}_{+} \times \mathbb{R}\right)$ deformation retracts onto S^{1}.
(k) $S^{1} \cup(\mathbb{R} \times 0)$ is homotopy equivalent to $S^{1} \vee S^{1}$.
(l) $\mathbb{R}^{2}-\left(\mathbb{R}_{+} \times 0\right)$ is contractible (it is star-convex).

Munkres $\S 58 \# 3$.
If f is a homotopy equivalence from X to Y, then there is a homotopy inverse g from Y to X, and the symmetry in the definition immediately implies that g is also a homotopy equivalence. So the relation is symmetric. It is reflexive since the identity map on X is a homotopy equivalence (with itself as the homotopy inverse). For transitivity, suppose $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are homotopy equivalences with homotopy inverses $f^{\prime}: Y \rightarrow X$ and $g^{\prime}: Z \rightarrow Y$. We claim that $f^{\prime} \circ g^{\prime}$ is a homotopy inverse to $g \circ f$, and therefore $g \circ f$ is a homotopy equivalence from X to Z. We have:

$$
\left(f^{\prime} \circ g^{\prime}\right) \circ(g \circ f)=f^{\prime} \circ\left(g^{\prime} \circ g\right) \circ f \simeq f^{\prime} \circ\left(\operatorname{id}_{Y}\right) \circ f=f^{\prime} \circ f \simeq \operatorname{id}_{X}
$$

and

$$
(g \circ f) \circ\left(f^{\prime} \circ g^{\prime}\right)=g \circ\left(f \circ f^{\prime}\right) \circ g^{\prime} \simeq g \circ\left(\operatorname{id}_{Y}\right) \circ g^{\prime}=g \circ g^{\prime} \simeq \operatorname{id}_{Z} .
$$

Munkres $\S 58 \# 9$.
(a) The problem would be relatively easy if not for basepoints. I recommend drawing a picture with all of the paths discussed below. We have a continuous map $h: S^{1} \rightarrow S^{1}$, taking x_{0} to x_{1}. Let g be a generator of $\pi_{1}\left(S^{1}, b_{0}\right)$. The recipe for computing the degree of h is: take any path α from b_{0} to x_{0} and any path β from b_{0} to x_{1}; then the degree is the unique integer d such that $h_{*}(\widehat{\alpha}(g))=(\widehat{\beta}(g))^{d}$. [Having chosen the generator of $\pi_{1}\left(S^{1}, b_{0}\right)$, the elements $\widehat{\alpha}(g)$ and $\widehat{\beta}(g)$ are generators of $\pi_{1}\left(S^{1}, x_{0}\right)$
and $\pi_{1}\left(S^{1}, x_{1}\right)$ respectively. So, the homomorphism $h_{*}: \mathbb{Z} \rightarrow \mathbb{Z}$ is multiplication by d. We need to know the generators first to distinguish between multiplication by d and by $-d$.]

Now consider a new basepoint x_{0}^{\prime} and let $x_{1}^{\prime}=h\left(x_{0}^{\prime}\right)$. Let δ be a path from x_{0} to x_{0}^{\prime}. Then $\alpha \cdot \delta$ is a path from b_{0} to x_{0}^{\prime} and $\beta \cdot(h \circ \delta)$ is a path from b_{0} to x_{1}^{\prime}. Recall the following properties of change-of-basepoint isomorphisms:

$$
\begin{equation*}
\widehat{(\alpha \cdot \delta)}=\widehat{\delta} \circ \widehat{\alpha} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
(\beta \cdot \widehat{(h \circ \delta)})=\widehat{(h \circ \delta)} \circ \widehat{\beta} \tag{2}
\end{equation*}
$$

Another property of change-of-basepoint isomorphisms we will need is compatibility with induced homomorphisms:

$$
\begin{array}{cc}
\pi_{1}\left(S^{1}, x_{0}\right) & \xrightarrow{h_{*}} \pi_{1}\left(S^{1}, x_{1}\right) \tag{3}\\
\downarrow \widehat{\delta} & \stackrel{\downarrow}{h \circ \delta} \\
\pi_{1}\left(S^{1}, x_{0}^{\prime}\right) & \xrightarrow{h_{*}} \\
\pi_{1}\left(S^{1}, x_{1}^{\prime}\right)
\end{array}
$$

Let d be the degree of h using x_{0} and x_{1}. Thus we have

$$
\begin{equation*}
h_{*}(\widehat{\alpha}(g))=(\widehat{\beta}(g))^{d}=\widehat{\beta}\left(g^{d}\right) . \tag{4}
\end{equation*}
$$

We want to show that $\left.h_{*}(\widehat{(\alpha \cdot \delta)}(g))=(\beta \cdot \widehat{(h \circ} \delta)\right)\left(g^{d}\right)$, since this equation is a valid recipe for finding the degree using the basepoints x_{0}^{\prime} and x_{1}^{\prime}. Rewriting using (1) and (2), we want to show that $h_{*}(\widehat{\delta}(\widehat{\alpha}(g)))=\widehat{(h \circ \delta)}\left(\widehat{\beta}\left(g^{d}\right)\right)$. The left side equals $\widehat{(h \circ \delta)}\left(h_{*}(\widehat{\alpha}(g))\right)$ by (3), which equals $\widehat{(h \circ \delta)}\left(\widehat{\beta}\left(g^{d}\right)\right)$ by (4), and we are done.

Remark. According to the recipe, we are free to choose any paths to get the change-of-basepoint isomorphisms. Our choice of $h \circ \delta$ (after picking δ) allowed us to use (3), which greatly simplified the proof. If a choice is up to you, always try to make it as compatibly as possible with the situation.
(b) By (a) we can assume that $x_{0}=b_{0}$ and use g as the generator of $\pi_{1}\left(S^{1}, b_{0}\right)$. Let $x_{1}=h\left(b_{0}\right)$ and $x_{2}=k\left(b_{0}\right)$. Let α be a path from b_{0} to x_{1}, so that

$$
h_{*}(g)=\widehat{\alpha}(g)^{d_{h}}, \quad d_{h}=\operatorname{degree}(h) .
$$

By Lemma 58.4 there is a path δ from x_{1} to x_{2} such that $k_{*}=\widehat{\delta} \circ h_{*}$. The path $\beta=\alpha \cdot \delta$ is a path from b_{0} to x_{2}, and so the degree d_{k} of k satisfies

$$
k_{*}(g)=\widehat{\beta}(g)^{d_{k}}=\widehat{\beta}\left(g^{d_{k}}\right)=\widehat{\delta}\left(\widehat{\alpha}\left(g^{d_{k}}\right)\right) .
$$

Using the Lemma 58.4 property we get $\widehat{\delta}\left(h_{*}(g)\right)=\widehat{\delta}\left(\widehat{\alpha}\left(g^{d_{k}}\right)\right)$, and since $\widehat{\delta}$ is a isomorphism, we can apply the inverse to obtain $h_{*}(g)=\widehat{\alpha}\left(g^{d_{k}}\right)=\widehat{\alpha}(g)^{d_{k}}$. This shows that $d_{h}=d_{k}$.
(c) Briefly: multiplication by d_{k} followed by multiplication by d_{h} is multiplication by $d_{k} d_{h}$. More rigorously:

Assume $x_{0}=b_{0}$ and use g as the generator fo $\pi_{1}\left(S^{1}, b_{0}\right)$. Let $x_{1}=k\left(b_{0}\right)$ and $x_{2}=h\left(x_{1}\right)$. Let α be a path from b_{0} to x_{1}, and β a path from b_{0} to x_{2}. We have

$$
k_{*}(g)=\widehat{\alpha}(g)^{d_{k}} \quad \text { and } \quad h_{*}(\widehat{\alpha}(g))=\widehat{\beta}(g)^{d_{h}}
$$

where d_{k} and d_{h} are the degrees of k and h respectively. Now

$$
(h \circ k)_{*}(g)=h_{*}\left(k_{*}(g)\right)=h_{*}\left(\widehat{\alpha}(g)^{d_{k}}\right)=\left(h_{*}(\widehat{\alpha}(g))^{d_{k}}=\left(\widehat{\beta}(g)^{d_{h}}\right)^{d_{k}}=(\widehat{\beta}(g))^{d_{h} d_{k}},\right.
$$

and so $h \circ k$ has degree $d_{h} d_{k}$.
(d) Use the generator $g=\left[\omega_{1}\right]$ for $\pi_{1}\left(S^{1}, b_{0}\right)$. If h is a constant map, then h is homotopic to the constant map $e_{b_{0}}=\omega_{0}$ (which has the same degree by (b)). Then $h_{*}(g)=\left[\omega_{0}\right]=g^{0}$ and the degree is 0 .

If h is the identity map then $h_{*}(g)=g=g^{1}$ and the degree is 1 .
If h is the reflection $(\cos \theta, \sin \theta) \mapsto(\cos \theta,-\sin \theta)$ then this is the same as $e^{i \theta} \mapsto e^{i(-\theta)}$, or $z \mapsto z^{-1}$. Thus $h \circ \omega_{1}=\omega_{-1}$ and $h_{*}(g)=g^{-1}$. The degree is -1 .

If h is the map $z \mapsto z^{n}$ then $h \circ \omega_{1}=\omega_{n}$ and so $h_{*}(g)=g^{n}$. The degree is n.
(e) We show that h is homotopic to a map of the form $z \mapsto z^{n}$; the degree is then n. Two homotopic maps of the same degree n will then be homotopic to each other, since they are homotopic to the same map $z \mapsto z^{n}$.

First, we can modify h by a homotopy (using rotations in S^{1}) to arrange that $h\left(b_{0}\right)=b_{0}$. The degree does not change, by (b).

Next consider the domain S^{1} as the quotient space of I with its endpoints identified, with b_{0} the image of the endpoints. Let $q: I \rightarrow S^{1}$ be this quotient map. The map $f=h \circ q: I \rightarrow S^{1}$ is a loop in S^{1} at b_{0}. (Informally, this is just h considered as a loop.) Let \tilde{f} be the lift of f to the covering space $p: \mathbb{R} \rightarrow S^{1}$, starting at 0 . Let $n=\tilde{f}(1)$. There is a path homotopy $\tilde{f}_{t}: I \rightarrow \mathbb{R}$ with $\tilde{f}_{0}=\tilde{f}$ and $\tilde{f}_{1}=\widetilde{\omega}_{n}$. Then $p \circ \tilde{f}_{t}$ is a path homotopy in S^{1} from f to ω_{n}.

The path homotopy $f_{t}=p \circ \tilde{f}_{t}: I \rightarrow S^{1}$ is constant on the fibers of q (the only non-trivial fibers are the endpoints of I, and these map to b_{0} for all t). Hence f_{t} factors as $g_{t} \circ q$; that is, the homotopy $g_{t}: S^{1} \rightarrow S^{1}$ is defined, and it is a homotopy from $g_{0}=h$ to g_{1}, which is the map $z \mapsto z^{n}$ (because q followed by $z \mapsto z^{n}$ is precisely ω_{n}). Hence every map h is homotopic to $z \mapsto z^{n}$ for some n.

Hatcher §1.1 \#11.
i_{*} is surjective: given $[f] \in \pi_{1}\left(X, x_{0}\right)$, note that since I is path connected, its image under f lies within a single path component of X. Its image contains x_{0}, so this path component is X_{0} and $f(I) \subset X_{0}$. Define $g: I \rightarrow X_{0}$ by $g(t)=f(t)$, and note that $i \circ g=f$, and so $i_{*}([g])=[f]$.
i_{*} is injective: suppose $i_{*}([f])=i_{*}([g])$. Then $[i \circ f]=[i \circ g]$ and so there is a path homotopy in X from $i \circ f$ to $i \circ g$. This is a map $F: I \times I \rightarrow X$, and since $I \times I$ is path connected, the image lies entirely within X_{0}. Thus there is a path homotopy $G: I \times I \rightarrow X_{0}$ defined by $G(s, t)=F(s, t)$, which is a path homotopy in X_{0} from f to g. Hence $[f]=[g]$ in $\pi_{1}\left(X_{0}, x_{0}\right)$.

Hatcher §1.1 \#13. Note: "homotopic" in Hatcher means "path homotopic"
(\Rightarrow) : suppose $i_{*}: \pi_{1}\left(A, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$ is onto. Let $f: I \rightarrow X$ be a path in X with endpoints in A. Let $a_{0}: I \rightarrow X$ and $a_{1}: I \rightarrow X$ be paths in A from x_{0} to $f(0)$ and from $f(1)$ to x_{0} respectively. Then $a_{0} \cdot f \cdot a_{1}$ is a loop in X at x_{0}. By assumption $\left.i_{*}([g])=\left[a_{0} \cdot f \cdot a_{1}\right]\right)$ for some loop g in A. That is, there is a path homotopy F from $a_{0} \cdot f \cdot a_{1}$ to $i \circ g$, a loop in X with image contained in A. Restricting this path homotopy to a subset $I^{\prime} \times I$ of $I \times I$, we obtain a homotopy from f to a
path with image in A. Turning this homotopy into a path homotopy is quite tricky to explain - I'll have to wait until next class.
(\Leftarrow) : suppose every path in X with endpoints in A is homotopic to a path in A. Given $[f] \in$ $\pi_{1}\left(X, x_{0}\right)$ we have that f is (path) homotopic to a path g in A. This is a loop at x_{0} in A so $[g] \in \pi_{1}\left(A, x_{0}\right)$. Also $i \circ g=f$, so $i_{*}([g])=[f]$ and i_{*} is surjective.

