Exam I Topology II (Math 5863) March 6, 2014

Choose four problems. If you do five, please say which four you want graded.

1(a) If X and Y are topological spaces, let $\mathcal{C}(X, Y)$ be the set of continuous maps from X to Y. Give the definition of the *compact-open* topology on $\mathcal{C}(X, Y)$ by giving a subbasis.

(b) Now suppose that X is locally compact and Hausdorff, and give $\mathcal{C}(X, Y)$ the compact-open topology. Define the *evaluation map* $e: X \times \mathcal{C}(X, Y) \to Y$ by the formula e(x, f) = f(x). Prove that this map is continuous.

[Hint: recall that X locally compact implies that for every open neighborhood W of x, there is an open neighborhood U with $\overline{U} \subset W$ and \overline{U} compact.]

2(a) Define what it means for $r: X \to A$ to be a *retraction*, where A is a subspace of X.

(b) Let $i: A \to X$ be inclusion and let $r: X \to A$ be a retraction, and pick a basepoint $a_0 \in A$. Show that the induced homomorphism $i_*: \pi_1(A, a_0) \to \pi_1(X, a_0)$ is injective.

(c) Show that there is no retraction of the "solid torus" $S^1 \times D^2$ to the boundary torus $S^1 \times S^1$.

3. Let $p: E \to B$ be a covering map. Choose $e_0 \in E$ and $b_0 \in B$ such that $p(e_0) = b_0$.

(a) Define the lifting correspondence $\Phi: \pi_1(B, b_0) \to p^{-1}(b_0)$.

(b) Show that Φ is surjective, and that Φ is injective if E is simply connected. State carefully any results that you use.

4. Let $h: I \to X$ be a path from x_0 to x_1 .

(a) Give the definition of the change-of-basepoint homomorphism $\beta_h: \pi_1(X, x_1) \to \pi_1(X, x_0)$. [Or, in Munkres notation, the homomorphism $\hat{h}: \pi_1(X, x_0) \to \pi_1(X, x_1)$.]

(b) Prove that β_h (or \hat{h}) is a homomorphism, and an isomorphism.

5. Let $p: E \to B$ be a covering map with B connected. Show that if $p^{-1}(b_0)$ has k elements for some $b_0 \in B$ then $p^{-1}(b)$ has k elements for every $b \in B$.